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ABSTRACT

Novel Devices and Components for THz Systems

Report Title

Middendorf, John R Ph.D., Engineering Ph.D. program, Wright State University, 2014.  

Novel Devices and Components for THz Systems



Since the first demonstration of the generation of terahertz (THz) pulses from photoconductive (PC) antennas, 
research has pushed toward the development of smaller, cost efficient, and faster THz systems.  This dissertation 
presents the work accomplished in order to realize these more practical terahertz (THz) photoconductive (PC) 
systems.

    First, this work will present a novel ErAs:GaAs photoconductive switch used to make a THz source excited by 
1550 nm laser pulses. It will be shown that the excitation process taking place in the material relies on extrinsic 
(rather than intrinsic) photoconductivity.  Then, several experiments will be presented that aim to improve the 
efficiency of the device and further the understanding of the underlying physical mechanisms.  The erbium 
composition of the photoconductive layer will be varied and the effects of these variations on THz generation will be 
investigated. Then the wavelength of the drive laser used to excite the extrinsic photoconductive mechanism will be 
varied, while recording the photocurrent responsivity. This wavelength study will be used to find the optimal drive 
wavelength for maximum THz power. In conclusion, the results of these experiments will show that extrinsic PC 
THz generation is practical, cost effective, and capable of producing an average THz power of more than 100 μW.  
Coinciding with this high power level, the bandwidth of this new source was found to be ~350 GHz, corresponding to 
a photocarrier recombination time of 450 fs. The work presented in this section will provide a path to develop 
superior THz PC sources that have a higher THz-power-to-cost ratio than the current state of the art.

    Photoconductive antennas are mostly used to conduct spectroscopy measurements, either in time domain systems 
(TDS) or in frequency domain systems (FDS). Currently, both techniques can reach high-frequencies (>1 THz) but 
struggle to do so while making fast, high-resolution measurements (<2 GHz). In addition, both methods can be time 
consuming to set up and perform. A superior spectrum analysis technique would greatly facilitate THz application 
development by making results easier and less expensive to obtain. Therefore, the second part of this dissertation 
addresses the need for quicker and more precise THz spectrum analysis by demonstrating a new type of THz 
spectrum analyzer based on a high-speed, tunable, Fabry-Perot interferometer. This new and unique spectrum 
analyzer reduces the time required to obtain a THz spectrum (a few seconds), while producing a more precise result 
(<2 GHz resolution).  After the presentation of this concept, the various experimental design iterations will be shown, 
while explaining the improvements gained from each.  Then experimental demonstrations of the new spectrum 
analyzer will be presented, and possible future improvements will bediscussed.

    While the Fabry-Perot based spectrum analyzer is an improvement for THz spectroscopy, it can suffer from two 
issues: mirror reflectivity that changes with frequency, and the inability to easily tune the mirror reflectivity to 
optimize the system for different applications. These issues make it challenging to obtain an accurate and useful THz 
spectrum. Therefore the third part of this dissertation is motivated by these problems and presents a solution; the use 
of structured-surface-plasmon (SSP) enhanced polarizers as Fabry-Perot mirrors. The SSP polarizers used in this 
work are composed of metal wire-grids with sub-wavelength feature sizes and high metal fill-factors. It will be 
shown that high fill-factor SSP polarizers can achieve superior THz performance, compared to traditional THz 
polarizers, with an extinction ratio exceeding 60 dB. With the use of these polarizers as mirrors, the Fabry-Perot can 
achieve variable mirror reflectivity by changing the polarizer orientation angle. This will allow the spectrum analyzer 
to compensate for any reflectivity-vs.-frequency changes that occur on the Fabry-Perot mirrors during a spectral scan.  
Changing the polarizer orientation makes it possible to optimize the spectrum analyzer for different applications; by 
choosing maximum frequency selectivity (with low power transmission), maximum power transmission (with low 
frequency selectivity), or somewhere in between. The SSP enhanced THz polarizers are inexpensive, can provide a 
significant upgrade to the Fabry-Perot spectrum analyzer, and help to achieve a better physical understanding of 
plasmonic design in the THz field.   After the new extrinsic ErAs:GaAs PC sources, Fabry-Perot spectrum analyzer, 
and SSP polarizers have been presented, this dissertation will finish with a demonstration of a new polarizing Fabry-
Perot spectrum analyzer and then suggestions for future research.
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ABSTRACT 

Middendorf, John R Ph.D., Engineering Ph.D. program, Wright State University, 2014.  
Novel Devices and Components for THz Systems

Since the first demonstration of the generation of terahertz (THz) pulses from 

photoconductive (PC) antennas, research has pushed toward the development of smaller, 

cost efficient, and faster THz systems.  This dissertation presents the work accomplished 

in order to realize these more practical terahertz (THz) photoconductive (PC) systems.  

First, this work will present a novel ErAs:GaAs photoconductive switch used to 

make a THz source excited by 1550 nm laser pulses. It will be shown that the excitation 

process taking place in the material relies on extrinsic (rather than intrinsic) 

photoconductivity.  Then, several experiments will be presented that aim to improve the 

efficiency of the device and further the understanding of the underlying physical 

mechanisms.  The erbium composition of the photoconductive layer will be varied and 

the effects of these variations on THz generation will be investigated.  Then the 

wavelength of the drive laser used to excite the extrinsic photoconductive mechanism 

will be varied, while recording the photocurrent responsivity.  This wavelength study will

be used to find the optimal drive wavelength for maximum THz power.  In conclusion, 

the results of these experiments will show that extrinsic PC THz generation is practical, 
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cost effective, and capable of producing an average THz power of more than 100 µW. 

Coinciding with this high power level, the bandwidth of this new source was found to be 

~350 GHz, corresponding to a photocarrier recombination time of 450 fs. The work 

presented in this section will provide a path to develop superior THz PC sources that have

a higher THz-power-to-cost ratio than the current state of the art.

Photoconductive antennas are mostly used to conduct spectroscopy 

measurements, either in time domain systems (TDS) or in frequency domain systems 

(FDS). Currently, both techniques can reach high-frequencies (>1 THz) but struggle to do

so while making fast, high-resolution measurements (<2 GHz).  In addition, both 

methods can be time consuming to set up and perform.  A superior spectrum analysis 

technique would greatly facilitate THz application development by making results easier 

and less expensive to obtain.  Therefore, the second part of this dissertation addresses the 

need for quicker and more precise THz spectrum analysis by demonstrating a new type of

THz spectrum analyzer based on a high-speed, tunable, Fabry-Perot interferometer.  This 

new and unique spectrum analyzer reduces the time required to obtain a THz spectrum (a 

few seconds), while producing a more precise result (<2 GHz resolution).  After the 

presentation of this concept, the various experimental design iterations will be shown, 

while explaining the improvements gained from each.  Then experimental demonstrations

of the new spectrum analyzer will be presented, and possible future improvements will be

discussed.  

While the Fabry-Perot based spectrum analyzer is an improvement for THz 

spectroscopy, it can suffer from two issues: mirror reflectivity that changes with 
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frequency, and the inability to easily tune the mirror reflectivity to optimize the system 

for different applications.  These issues make it challenging to obtain an accurate and 

useful THz spectrum.  Therefore the third part of this dissertation is motivated by these 

problems and presents a solution; the use of structured-surface-plasmon (SSP) enhanced 

polarizers as Fabry-Perot mirrors.  The SSP polarizers used in this work are composed of 

metal wire-grids with sub-wavelength feature sizes and high metal fill-factors.  It will be 

shown that high fill-factor SSP polarizers can achieve superior THz performance, 

compared to traditional THz polarizers, with an extinction ratio exceeding 60 dB.  With 

the use of these polarizers as mirrors, the Fabry-Perot can achieve variable mirror 

reflectivity by changing the polarizer orientation angle.  This will allow the spectrum 

analyzer to compensate for any reflectivity-vs.-frequency changes that occur on the 

Fabry-Perot mirrors during a spectral scan.  Changing the polarizer orientation makes it 

possible to optimize the spectrum analyzer for different applications; by choosing 

maximum frequency selectivity (with low power transmission), maximum power 

transmission (with low frequency selectivity), or somewhere in between.  The SSP 

enhanced THz polarizers are inexpensive, can provide a significant upgrade to the Fabry-

Perot spectrum analyzer, and help to achieve a better physical understanding of 

plasmonic design in the THz field.  After the new extrinsic ErAs:GaAs PC sources, 

Fabry-Perot spectrum analyzer, and SSP polarizers have been presented, this dissertation 

will finish with a demonstration of a new polarizing Fabry-Perot spectrum analyzer and 

then suggestions for future research.
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 1.  INTRODUCTION

This work was done with the purpose of improving terahertz (THz) generation and 

control capabilities for THz spectroscopy, through the development of more practical 

photoconductive THz sources and novel components.

THz spectroscopy has recently received a tremendous amount of attention for 

security applications because of the unique ability to measure spectral signatures of 

targets, such as illicit drugs and explosives [7], [8], concealed by opaque materials such 

as common plastics used in suitcases and other containers [9], [10].  The ability to 

propagate through visibly opaque materials is a trait shared with radio-frequency systems,

and the ability to measure spectral signatures is a trait shared with infrared systems.  In 

this way THz radiation essentially shares beneficial aspects of the two electromagnetic 

regions on either side of it.  However there are significant challenges presented with THz 

systems, chiefly related to producing and measuring THz radiation with cost effective, 

fast, and affordable systems.  This dissertation was completed to meet this challenge.  

 The work done for this dissertation starts with a brief introduction to THz 

systems, namely what a THz system comprises.  Then, THz spectroscopy will be 

introduced to build some familiarity with this application.  The challenges that are present

in THz systems will then be introduced so that the importance of this work will be 

obvious.  The first novel device will then be presented, a new broadband pulsed THz 
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source that produces large amounts of THz power, while being activated by a 1550 nm 

pulsed laser.  Several experiments will then be described that were done to thoroughly 

characterize the performance of the new source, improve the physical understanding of 

how it works, and provide a path for future improvements.  

The new THz source was discovered during the development of a novel THz 

spectrum analyzer and the measurements performed on this source highlighted the need 

for this new system.  After the presentation of the new THz source, the spectrum analyzer

concept will be introduced which is based on a Fabry-Perot interferometer.  It will be 

shown to be easy to construct and use, while also proving capable of taking high-speed 

and high resolution THz measurements.  The spectrum analyzer theory, design iterations, 

software, and initial measurements will be discussed as well.

As part of the design of the new spectrum analyzer, surface-plasmon-like 

techniques were utilized and improved upon for controlling and routing THz radiation.  

The so-called structured-surface-plasmon techniques were applied to a substrate-based 

linear THz polarizer, and eventually to the new spectrum analyzer.  During this 

procedure, the performance of the THz linear polarizer was greatly enhanced compared to

conventional, free standing wire-grid polarizers.  This was shown through 

characterization of the polarizer performance.  Finally, the new enhanced polarizers were 

used in the new Fabry-Perot spectrum analyzer design, and the first proof-of-concept 

measurements were taken on the new broadband 1550-nm-driven THz sources.
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1.1. What is a THz system?

In 1886, using a simple spark gap, Heinrich Hertz successfully completed the first 

transmission of a free-space electromagnetic signal.  This feat triggered an explosion in 

research and development for “wireless” systems and today electromagnetic systems 

(such as the cell phone) are essential in nearly every aspect of life.  Early systems were 

very low in frequency.  For example, Hertz’s breakthrough system operated around 75 

MHz (4 m wavelength) and many common frequency bands (such as AM radio) have 

frequencies in the kHz.  In later decades, “wireless” technology advanced considerably 

and the frequencies of radio systems began to increase.  In the 1940s, systems reached up 

to 3000 MHz using simple wire based antennas [11], and today more complex solid-state 

microwave sources exist as high in frequency as 100 GHz (3 mm wavelength).  Some 

techniques have even been developed to achieve higher frequencies (Gunn oscillators, 

IMPATT diodes, Gyrotrons, and others), but 100 GHz represents a challenging barrier on 

what can be achieved with solid-state oscillating electronic sources, because of speed 

limitations present in electronic circuits [12].
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In parallel to radio and microwaves, another part of the electromagnetic spectrum 

that saw rapid growth and development was the optical spectrum.  In 1873, prior to 

Hertz’s work, James Clerk Maxwell published the defining set of equations that govern 

electromagnetic radiation, and he proved that visible light was a part of the 

electromagnetic spectrum.  The frequencies that make up the visible light spectrum (430-

750 THz) are much higher than radio- and micro-waves, and light waves tend to be 

generated with very different techniques, including thermal blackbody radiation (the sun, 

halogen light bulbs) and stimulated or spontaneous photon emission (lasers, LEDs) [13], 

[14].  Optical technologies advanced quickly, going from simple black and white 

photography to advanced camera systems that could see light invisible to the human eye 

(such as infrared and ultra-violet light).  Optical technologies continued to evolve and 

4

Figure 1. The electromagnetic spectrum.  Shown here is the THz band that is defined by 
the upper and lower limits of the microwave and infrared regions. 
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eventually the low-frequency limits of optical systems were realized.  Due to a drop-off 

in black-body radiative emission, poor atmospheric transmission, and difficulty of 

detection, the lower limit of the optical spectrum (known as the far-infrared) is about 10 

THz.  This low-frequency limit, combined with the RF system high-frequency limits, 

define boundaries of the THz region (Fig. 1).  The THz spectrum, or the “THz gap”, can 

therefore be defined as the electromagnetic spectral region from approximately 100 to 

10000 GHz.  

With this explanation in place, a THz system can now be broadly defined as a 

system or set of components that detects, controls, and (possibly) produces 

electromagnetic radiation in the THz gap.  There are two primary classifications of a THz

system, active (Fig. 2(a)) and passive (Fig. 2(b)).  An active THz system is simply one in 

which the THz radiation being controlled and detected is also produced by the system, 

while a passive THz system receives its THz radiation from some other source.  Passive 

THz systems are used primarily in astronomy, as there is usually insufficient background 

THz in the earth’s atmosphere for passive THz systems; a stark contrast to infrared 

radiation which is plentiful in the earth’s atmosphere.    The main focus of this work was 

the development of sources and devices intended for use in active THz systems used for 

practical terrestrial applications.
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1.2. THz Spectroscopy – the motivation

The unique attributes present in THz radiation, briefly introduced in the previous 

section, allow for a diverse and exciting set of applications that are in high demand.  One 

of the most popular applications to date is the imaging of concealed objects [10], [15]–

[18].  Similarly, imaging with THz radiation has also found uses in structural analysis, 

food quality analysis [10], [19], [20], and biomedical sensing applications [21]–[24].  

Another THz application receiving much attention is the identification of high-interest 

targets (such as illicit drugs or explosives) using spectral signatures [7], [8], [24]–[26].  

THz spectroscopy has a unique advantage over imaging techniques because rather than 

just creating an image of a concealed object, the spectral signatures collected from 

6

Figure 2. (A) A simple active THz system.  (B) A simple Passive THz system.  In both 
system types the Sample or THz devices are optional components.
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spectroscopy allow a system to uniquely identify what the object is as well.  By 

comparing the spectral absorption signatures of a scanned target to a database of known 

signatures, targets can be identified. An example of such a THz signature is shown in Fig

3 [27].

Recent years have brought a great deal of research into spectroscopy for security 

and biomedical purposes as well [7], [8].  Yet, THz spectroscopy still hasn't seen 

widespread use in industry, despite the abilities described here.  This is because of the 

lack of practical spectroscopy systems.  The major problem with THz spectroscopy 

systems is that most are currently designed for use in transmission mode.  This means 

7

Figure 3: Example THz spectral signatures.  The sharp spikes in absorption here are 
uniquely associated with transmission through alpha-lactose monohydrate [27].
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that a sample or object must be carefully extracted and placed inside of the system, which

for many real world applications (such as security scanning in an airport) isn't practical.  

For example, if an explosive, say TNT [28], is concealed underneath a persons clothing it

can not be detected by a transmission system.  THz radiation can not propagate through 

water, and hence the human body.  So, the only way to detect the TNT package would be 

using a reflective spectroscopy system.  However in order make a reflective spectroscopy 

system several challenges must be overcome.  These challenges include reflective 

signature identification (reflective signatures will have a different profile than 

transmissive ones), creating enough THz power for stand-off detection (power is at a 

premium in the THz region, so stand-off distance must be small), and developing a 

spectrum analyzer that can be easily used in reflection.  

The work done for this dissertation is focused on solving these problems, 

particularly improving high-power THz source technology and developing a better 

spectroscopy system that can be easily used in reflection mode.  But while reflective THz

spectroscopy serves as the primary motivation of this dissertation, the components 

developed and demonstrated will be useful for transmission mode spectroscopy and other

applications as well.  
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 2.  Novel THz photoconductive sources

THz spectroscopy relies heavily on photoconductive (PC) THz sources because of

their ability to radiate over very large frequency ranges (0.1 to ~6 THz).  Other types of 

THz sources (such as very high-frequency RF sources and quantum-cascade-lasers) can 

not achieve comparable bandwidths [29], [30].  Consequently, as the push for better THz 

technology continues, much of it focuses on PC sources.  There are two primary types of 

PC THz sources: the photoconductive switch (PC switch) and the photoconductive mixer 

(photomixer).  PC switches and photomixers are operationally very different devices, 

despite having a very similar appearance.  Photomixers are coherent, continuous-wave 

(CW), single (tunable) frequency electro-optic THz sources activated by the optical 

heterodyne conversion of two CW lasers [31].  While PC switches (sometimes called 

Auston switches) are pulsed, broadband electro-optic THz sources [32], [33].  The 

photomixer is commonly used in frequency-domain spectroscopy applications, where 

spectral intensity data is recorded as the frequency is swept.  PC switches, alternatively, 

are more commonly used in the THz field because they are ideal for use in time-domain 

spectroscopy (TDS) and imaging applications; TDS systems are very popular because 

they can collect data very quickly (a few seconds), and PC switches are better for 

imaging because they produce more total THz power [21], [22].  The new spectroscopy 

technique described in Chapters III and IV relies on the PC switch, so the focus of the 

present Chapter will be the PC switch, but it is worth mentioning that the advances 
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presented in this chapter may be applied to photomixers as well (see page 51).  

The dashed box shown in Fig. 4 is a visual illustration of what this chapter will 

cover.  First there will be a discussion of PC switch basics, how they operate, and the 

current state of the art.  Next a new and promising technique for generating THz radiation

with PC switches will be introduced that uses ultrafast extrinsic photoconductivity.  This 

new source takes advantage of previously unknown capabilities of a common ultra-fast 

semiconductor.  After the new THz source is introduced, experiments will be shown that 

were conducted to study, understand, and possibly improve the new source.  The results 

from these experiments will be shown, discussed, and a future path for research on the 

new extrinsic PC switch will be presented.  
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Figure 4: Research plan for this work.  Chapter II covers an exciting new discovery: an 
extrinsic photoconductive switch, that could have a large impact on the field of THz 
spectroscopy.

31



2.1. Photoconductive switch fundamentals

The PC switch arose from a simple-but-difficult problem: switching an antenna 

between on and off states on the sub-picosecond time scale (necessary to achieve high-

frequency, high power pulses).  In the past, room-temperature non-optically driven 

electronic switching methods were not able to realize switching speeds on the sub-

picosecond scale [34].  This deficiency in switching capabilities from non-optically 

driven systems is directly cited as the motivation for the invention of the first PC switch 

[33], [34], where at that time the best semiconductor plasma based (non-optical) switches

worked on the nanosecond scale. Today, sub-picosecond switching speeds are still a 

tremendous challenge for non-optically driven, pulsed sources, especially as the push for 

higher frequency, higher power THz sources continues.  PC switches still possess the 

greatest ability to produce short, sub-picosecond electromagnetic pulses [7].

The reason such short electromagnetic pulses are desired lies in the innate 

dependence of frequency-bandwidth on time-domain pulse width.  It is well known that 

the shorter an electromagnetic pulse is in the time-domain (s), the greater the frequency 

(1/s) bandwidth (the Fourier transform of a Dirac-delta function is a classic example).  So

determining the temporal pulse length necessary for THz operation is easily done by 

taking the inverse of the desired bandwidth (τ = 1/ω).  For example, to achieve a 3-dB 

frequency-bandwidth of 100 GHz the temporal pulse width (typically FWHM) emitted 

from the PC switch must be 1.59 ps, and for 1 THz bandwidth the pulse width must be 

0.159 ps.  PC switches are capable of achieving these extremely short pulse widths 

because they are actuated by extremely short optical laser pulses.  Mode-locked-(pulsed)-
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laser (MLL) technology has advanced to the point where sub-fs optical pulses can be 

created [35].   Therefore, laser technology has surpassed the pulse width needs of THz PC

switches, and ultra-fast (sub-picosecond scale) fiber-optic lasers emitting 0.1 ps pulses 

are readily available [36].    With the availability of such ultra-fast lasers, the limit on PC 

switch bandwidth (and power) lies elsewhere, in the antenna design and semiconductor 

choice.  However, before explaining how the antenna and semiconductor affect PC switch

performance, it is important to have a basic understanding of how a PC switch operates.  

In concept, PC switches are simple electro-optical RF-to-THz devices, a variant 

of which was first devised in the 1970s by Johnson and Auston [33].  There are typically 

only two primary physical components: an antenna and an ultra-fast photoconductor.  A 
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Figure 5: Simple PC switch diagram.  The antenna arms are biased so that when 
incoming photons switch the semiconductor to a conducting state current can flow 
through the antenna.
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cross-sectional-view of a simple PC switch is shown in Fig 5.  The antenna in a PC 

switch has two arms or electrodes (Fig. 7 shows a small selection of the antenna designs 

that have been developed).  The two antenna arms have a DC bias applied and form an 

open circuit with the ultra-fast semiconductor “switch”  at the center of the arms, in the 

absence of laser power.  However, when a pulse of high power photons from a MLL are 

incident, they convert the semiconductor into a conductor temporarily, and a pulse of 

current flows through the antenna1.  This results in a pulse of radiation that is emitted 

from the antenna and as explained previously, the frequency bandwidth of that pulse is 

defined by the temporal width of the pulse.  A simple experimental block diagram of a PC

switch setup can be seen in figure 6.  

1 It is important to note that the photon energy of the laser must be larger than the bandgap of the 
photoconductor.  For example, with GaAs photoconductors 800 nm photons are used (E = 1.55 eV and 
GaAs Eg = 1.42 eV).
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Figure 6: A basic PC switch setup.  The ultrafast laser is chopped so the power can be 
easily detected, then focused onto the PC switch.  The PC switch is biased with a DC 
source.  When the laser pulse hits the PC switch THz power is emitted.  An oscilloscope 
is used to monitor current flow in the antenna.
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 2.1.1. Photoconductive switch antennas

The antenna chosen to radiate the electromagnetic pulse generated by the PC 

switch is an important design consideration, mostly because of the effect the antenna has 

on total output power.  But while the antenna design does not have a large effect on the 

temporal pulse width, there is still some effect on the THz bandwidth.  This is because the

antenna must have feature sizes suitable for coupling frequencies across the THz 

spectrum [37].  Because of this many antennas, such as those in figure 7 (a, b, d), have 

tapered arms.  The larger features have higher coupling efficiency for low frequencies 

(~100 GHz), while the small features in the center of the antennas couple the higher THz 
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Figure 7: Common antennas designs used in PC switches 
(overhead view).  Spiral antennas (a) are often preferred 
because of high power, circularly polarizer output [60].
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frequencies more effectively.  Simpler antennas such as dipoles (Fig. 7 (c)) will still work

for PC switch use, but their bandwidth will be diminished by their resonant nature.  

Another antenna design consideration is directivity.  Since THz power is always at

a premium, a high gain, frequency independent antenna design is also desirable.  Designs 

such as the dipole and bow-tie are famous for their low directivity and strongly frequency

dependent radiation pattern [11], which further reduces their usefulness.  Alternatively, 

self-complimentary, spiral-based designs have higher directivity and the beam pattern is 

completely frequency independent.  With these antenna designs most radiation 

propagates perpendicularly to the plane of the antenna, and with the considerably higher 

dielectric constant of GaAs (12.8) (compared to air), most of the THz radiation from 

these antennas is coupled into the GaAs (rather than the air) side of the antenna.  The 

high dielectric constant of GaAs creates a very low critical angle for total internal 

reflection (16.7o), so to couple the radiation out of the GaAs substrate, hemispherical 

Silicon lenses are often abutted to the substrate.  The Silicon dielectric constant is closely 

matched to GaAs, allowing the radiation to effectively couple into the silicon lens, and 

then into free-space.  Directivity of nearly 30 dB has been reported in such spiral-based 

antenna designs [37].

P=η I 2 RA( f ) (1)

As stated above, total THz output power is the larger issue that drives antenna 

choice for PC switches.  Shown in Eq. 1 is THz power output vs. photocurrent in the 

antenna where η is the coupling efficiency (and is a number between 0 and 1), I is 

photocurrent, and RA(f) is the antenna radiation resistance [37].  Coupling efficiency is 
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simply a ratio of absorbed photons vs. incident photons, so this factor is antenna 

independent.  So only one variable in this equation is primarily determined by the 

antenna design: RA.  As mentioned in the bandwidth discussion, an antenna should be 

chosen so that RA remains high across the THz spectrum of interest. 

Designs such as the dipole (Fig. 7 (c)) have RA values that vary greatly across the 

spectrum. Because of this, RA can be lower than 10 Ω away from the center frequency 

[11].  The bow-tie (or triangular dipole) antenna is less frequency dependent than the 

dipole but still has limited power because of lower RA.  However, spiral or log-spiral 

(Fig. 7 (a)), and log-periodic (Fig. 7 (b)) antennas are designed with special symmetry 

properties that allow them to have nearly frequency independent RA.  The spiral and log-

periodic designs also have the benefit of being self-complementary designs which allows 

RA to approach high and constant value.  RA in self-complementary designs approaches 

the modified form of Booker's relation for air-to-dielectric interfaces (Eq. 2) where ηo is 

the characteristic impedance of free space and εeff is the effective permitivitty of the PC 

switch semiconductor substrate (typically GaAs).  Using this relation RA reaches a flat 

value 72 Ω for most self-complimentary THz PC switches [6], [11], [37], [38].  

RA=2ηo√(ϵeff ) (2)

Spiral, log-spiral, and log-periodic antennas have represented the state-of-the-art 

in THz PC switch antenna design for many years because of their large bandwidth and 

frequency independent radiation pattern, but a newer antenna type has been proven 

capable of producing more powerful THz signals in recent years, particularly between 0.1

and 1 THz [6], [37], [38].  This new antenna can be seen in Fig. 8 and is a self-
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complementary square-spiral antenna.  In appearance, this design is similar to the spiral 

design, but the key difference is that each straight section of the square spiral acts as it's 

own dipole.  Each dipole section, from the center out, is designed for a progressively 

longer wavelength and because of this the square spiral has much broader bandwidth than

a regular dipole antenna.  This design is advantageous because dipoles have a much 

greater RA than the self-complementary set of antennas.  However dipole antennas are 

normally hindered by a very small bandwidth – RA falls off quite quickly away from the 

dipole center frequency [11].  So by effectively having many different sized dipoles (with

different center frequencies) this design keeps a much higher RA across much of the THz 

spectrum, fluctuating between 100 and 250 Ω [37].  This level of resistance is very 

convenient, aside from being a higher value than other self-complementary designs, it 

also more closely matches the resistance of the photoconductive switch in the middle of 

the antenna (when the switch is turned on).  Therefore, the square spiral design also 

benefits from lower impedance mismatch losses between the antenna and PC switch and 

the self-complementary nature of this design also maintains a frequency-independent 

radiation pattern.  With this antenna design a PC switch was fabricated and tested that is 

currently the worlds most powerful, producing 1.6 mW of broadband, average THz 

power [7]. 

The square spiral antenna is arguably the state-of-the art at this moment in time 

but it is worth mentioning that other techniques may enhance the performance even 

further.  Excellent research is being conducted on enhancing PC switch performance by 

increasing laser-to-THz power coupling efficiency with plasmonics [39].    However at 
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the present time, the antenna design in figure 8 is more well known and readily available, 

so this design was chosen for the present work.  In any case, the advances in PC switch 

technology presented in this dissertation are most related to the ultrafast semiconductor 

material used for the switch, the role of which is explained in the following section.

18

Figure 8: The square spiral antenna, the state of the art in THz photo-antenna 
design.  The highest ever THz power levels (up to 1.6 mW) have been measured 
from PC switches coupled to this antenna.  The active gap is the point at which 
the laser photons are focused, this gap is the switch.
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 2.1.2. Photoconductive switch materials: Ultrafast photoconductor properties

The most important aspect of a PC switch is undoubtedly the ultrafast 

photoconductor.  This aspect plays the largest role in defining the PC switch's bandwidth 

and output power capabilities.  As a consequence, PC device (PC switches, photomixers, 

and photodiodes) research is often focused around creating new or superior 

photoconductive materials.  To create a high-power, broadband THz PC switch, it is 

necessary to have a photoconductor that is highly conductive in its “on” state, reliably 

supports high power levels, and is also capable of switching off very quickly to maximize

bandwidth (through shorter pulse width).  In order to choose or create a photoconductor 

that possesses these attributes, there are several semiconductor properties to keep track 

of.  The most critical of these properties include the photocarrier lifetime (in 

picoseconds), photocarrier mobility (cm2/V-s), dark resistivity (Ω-cm), and the critical 

breakdown field EB (V/cm) [2].  The drive wavelength (λ) is also an important 

consideration because it can greatly affect the cost of generating THz power with a PC 

switch [40].  The next several pages will describe these properties, so if the reader already

understands them, skip to page 27.

Photo-carrier lifetime (often called recombination or relaxation time) is the chief 

factor in determining the PC switch bandwidth.  Photo-carrier lifetime is the amount of 

time required for the photoconductor to return from a conducting state to a non-

conducting state, which naturally happens after the laser pulse has ended.  This is because

excited electrons (or holes) must relax from the conduction band (or valence band) back 

into the valence band (or conduction band).  So if the lifetime is short, the pulse width of 

the THz signal can also be short (and the bandwidth high).  Another way of illustrating 
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the effect of photo-carrier lifetime is by spectral analysis; the THz power spectrum from a

PC switch typically fits the single-pole Lorentzian function shown in Eq. 3 where τ is 

lifetime, A is a constant, and f is frequency [5].  Using this equation it is evident that a 

smaller τ will lead to higher power regardless of frequency.

S ( f )=A [1+(2π f τ)2]−1 (3)

The carrier mobility is an important semiconductor property because it directly 

affects the on-resistance and therefore the output power.  Mobility can be simply 

described as the ease with which carriers (electrons or holes) can drift in a material [2], 

but the importance of having high mobility in the photoconductor is best shown by 

semiconductor physics.  For example, an expression for current from Ohms law is show 

in Eq. 4, which is dependent on the conductivity (σ), Electric field in some direction x 

(Ex), and the area over which the current is flowing (A).  Also shown in this equation is 

an expression for the on-state conductivity that is dependent on the electron (μn) or hole 

(μp) mobility, the photocarrier density created by the laser pulse (Δn), the charge per 

carrier (q), and the dark conductivity (σo).  From this expression, it is obvious that the 

mobility has a direct affect on the on-state conductivity and thus the current [1], [2].  

Applying this information to equation 1, the THz power transmitted from the antenna, 

one can see the quadratic2 effect electron or hole mobility (and electric field, described 

later) has on transmitted THz power3.  

2 The actual increase is slightly less than quadratic at high Ex values due to current saturation effects [1].

3 The area (A) of the photoconductive gap also has a quadratic effect on total THz power, however usually 
A is kept small to maintain a low RC time constant in the PC switch circuit (C is directly related to A).
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I x=σ E x A whereσ=σo+qΔ n(μe+μ p) (4)

Like mobility, it is also important to have a high dark resistivity (ρo) and critical 

breakdown field (EB) in the photoconductive material.  High dark resistivity is useful 

because it lessens the amount of leakage current (or “dark current”) in the 

photoconductive layer during the off-state, which in turn lessens the effects of Joule 

heating (Joule heating is known to contribute to device failure).  A lower dark current 

level also enables a more powerful THz pulse because there will be a greater difference 

between peak pulse current in the on state and the DC baseline current in the off state.   

Photoconductive materials with high dark resistivity also tend to have high EB.  This is an

important fact because, as alluded to in the previous paragraph, the THz power from a PC

switch scales nearly quadratically with bias voltage [5].  Therefore choosing a 

photoconductive material with a high EB allows the PC switch to be used with a higher 

bias voltage.  

Another important consideration is the wavelength of the laser (drive 

wavelength), which is (usually) entirely dependent on the band-gap of the PC material.  

Typically ~800 nm lasers are used to drive the current state-of-the-art GaAs-based PC 

switches, but there is a strong push to create comparable PC switches driven by 1550 nm 

lasers.  1550 nm lasers are typically much less expensive and more readily available, as 

are the components used for controlling 1550 nm light (stemming from their widespread 

use in the fiber-optic telecomm industry) [40].  However this design choice presents a 

trade-off because previous research has shown that EB tends to scale super-linearly with 

band-gap [41].  Therefore materials that have the proper band-gap for 1550 nm photons 

21

42



suffer from low maximum power output because they must have a low bias voltage, 

compared to their 800 nm counterparts.  

 2.1.3. Photoconductive switch materials: State-of-the-art

The operation of current state-of-the-art PC switches is based on the simple 

intrinsic photoconductive process, shown in Figs. 9 and 10.  If the incoming photons 

emitted from the ultrafast laser have more energy than the semiconductor band-gap-

energy (photon energy calculated by E = hc/λ where h is Planck's constant, c is the speed 

of light, and λ is the wavelength) then they can transfer their energy to bound electrons in

the valence band, exciting them across the bandgap and into the conduction band of the 

semiconductor.  This process causes the PC material to reach a conductive state that will 
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Figure 9: The intrinsic photoconductive process in LT-GaAs or ErAs:GaAs.  
Incoming photons excite electrons from the valence band into the conduction 
band, thus creating a conductive state in the semiconductor.
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continue as long as the photons are incident on the semiconductor.  When the laser pulse 

ends carrier excitation stops and the electrons in the conduction band eventually 

recombine with the holes that were created when they left the valence band (electrons and

holes are always created in pairs by the intrinsic process, so holes must be available).  For

the GaAs band-gap of 1.42 eV, shown in Figs. 9 and 10, the wavelength of light must be 

shorter than ~876 nm for the photon energy to be high enough to excite an electron across

the bandgap and create a conductive state.  So for GaAs based PC switches ~800 nm 

lasers are typically used because this wavelength is readily available in multiple laser 

types [40], [42].  

As explained in the previous section, it is desirable for the electron-hole 
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Figure 10: The recombination process that returns a photoconductive 
material from a conducting state to a non-conducting state.  Many ultrafast 
materials contain impurities or defects in the crytsal lattice, because the 
impurities act as recombination or donor levels and help decrease carrier 
lifetime [31], [43], [44].
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recombination process to happen as quickly as possible in a PC switch.  This will enable 

the semiconductor to switch off faster and the THz pulse will be shorter in the time-

domain.  One of the breakthrough methods of shortening recombination time was 

deliberately creating PC materials with defects in the crystal structure.  Early on this was 

done by bombarding the material with high-energy ions [43], [44].  These defects (such 

as atomic interstitials or substitutions) in the crystal lattice create mid-band-gap energy 

levels that tend to be ultrafast recombination centers for electron-hole pairs (as seen in 

Fig. 10) [1].  Using materials with such defects (like ion-implanted silicon) substantially 

decreases carrier lifetime, but they also have a negative effect on carrier-mobility which 

lowers overall current generation (eq. 4) [31], [43].  Despite the poor current generation 

capability of these early materials, the thought process behind them lead to one of the 

major breakthroughs in THz PC materials, low-temperature-grown (with molecular beam 

epitaxy) Gallium Arsenide (LT-GaAs).  

LT-GaAs was first utilized in photoconductive devices in the early 1990s and it 

was vastly superior to the PC materials that preceded it.    Growing GaAs at low-

temperature (<200 oC) created a large number of structural defects (mostly As atoms 

substituting for Ga atoms, or as metallic As precipitates), similar to what was seen with 

ion bombardment in previous materials.  A very high density of mid-gap energy levels are

created from these defects, and thus a high density of ultrafast recombination centers.  

These allow LT-GaAs to have very short carrier lifetime (~0.27 ps) [31].  In addition 

there are two key practical differences between LT-GaAs and previously used materials.  

First, LT-GaAs has considerably higher mobility, partially because GaAs inherently has 
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higher mobility than silicon [1], [2], [43].  Second, LT-GaAs has a high breakdown field 

EB (and dark resistivity) due to it's large bandgap (and high bulk resistivity), 1.42 eV for 

GaAs vs. 1.1 eV for silicon, 1.35 eV for InP (105 Ω-cm).  With these advantages LT-GaAs

was capable of producing power levels at least ten times greater than other PC materials 

of the time [44].  This made LT-GaAs the best ultrafast PC THz material when it was 

introduced, in fact LT-GaAs was so good that it still sees wide-spread use today.  Only 

one other material has surpassed LT-GaAs in THz power generation, erbium doped GaAs 

(ErAs:GaAs), and consequently ErAs:GaAs represents the current state-of-the-art in PC 

switch materials [3], [6].

ErAs:GaAs is a GaAs MBE

layer grown at normal temperatures,

much higher than LT-GaAs (> 500 

ºC vs. 200 ºC for LT-GaAs).  As the

epitaxial layer is grown, it is doped

with the rare-earth metal erbium

(Er), a process that is described in

Refs. [45], [46].  The effect of the Er

doping is very similar to what is

seen in LT-GaAs; the material has a

large number of substitutional

impurities (Er replacing Ga) that act

as mid-band-gap energy levels, and
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Figure 11: A ErAs particle in the GaAs lattice.  Er 
atoms added to GaAs during growth become 
substitutional defects because they have a closely 
matched lattice constant, what little difference there
is can be accounted for elastically.  Higher mobility
values in ErAs:GaAs compared to LT-GaAs have 
been attributed to the close lattice match shown 
here.
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again, these help shorten carrier lifetime by acting as ultrafast recombination centers.  

The key difference is that ErAs:GaAs also provides superior mobility; a fact that is 

attributed to the excellent lattice matching between ErAs sub-lattice and the GaAs sub-

lattice.  The ErAs and GaAs have lattice constants within 1.5% of each other (shown in 

Fig. 11).  Because of the closely matched lattice constant the Er atoms can be (but don't 

have to be4) almost exclusively arranged as homogenous substitution defects, while 

causing very little strain in the crystal lattice [45]–[47].  Therefore the physical structure 

of the crystal lattice is nearly defect-free and excited carriers can drift between atoms 

with fewer scattering events (therefore increasing the mean-free-time and hence the 

mobility5).  The mid-gap energy levels in ErAs:GaAs also have additional advantages 

that relate to the PC switch advancements made in this dissertation, which is discussed in

Chapter II, page 27.

While LT-GaAs and ErAs:GaAs are currently the best materials for THz 

generation, they usually require the use of 800 nm ultrafast lasers.  As mentioned 

previously, it is desirable to create THz sources that use 1550 nm fiber-optic lasers and 

components, and progress towards this goal has been steady.  So far the physical 

mechanism used to create 1550 nm PC switches has been the same, cross-gap (intrinsic) 

photoconductivity.  For intrinsic operation at 1550 nm, the ultrafast material must have a 

4 ErAs molecules can also be clumped together into nanoparticles or “islands,” this is achieved using 
different parameters during the MBE growing process [2].  However this technique is thought to be 
inferior because the large nanoparticles have a larger capture cross-section then homogeneously 
distributed ErAs particles.  Following Shockley-Reed-Hall theory, larger capture cross-section slows 
down recombination time [3].

5 Lattice defects impede electron transport by shortening the mean-free-time, or the average time the 
carrier travels before running into some particle.  A simple mobility equation shows the effect of mean-
free-time on mobility: μn=q t̄ /mn

✳ t̄ is the mean-free-time, q is the charge of an electron, and

mn
✳

is the conductivity effective mass [4].
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small band-gap to compensate for the low photon energy (0.80 eV).  At the present time 

the best materials for this task are InGaAs or InGaAsP epitaxial layers on InP substrates.  

Ultrafast carrier lifetimes have been achieved in these materials with a variety of different

methods of implanting metallic nanoparticles or creating deep level lattice defects.  Some

of the most promising materials include Be-doped LT-InGaAs [48], Fe-implanted InGaAs

[49], ErAs:InGaAs [50], Br-irradiated InGaAs [51], Be-doped InGaAs/InAlAs [52], cold-

implanted InGaAsP [53], and standard InGaAs with intervening InAlAs layers [54].  All 

of these materials have a carrier lifetime of 1 ps or less, and many of them have higher 

mobility than GaAs.  However the problem with all of these materials is that they still 

suffer from low EB due to their small band-gap [41].  Because of this the DC bias voltage 

must be considerably lower and power generated (Eq. 1) is significantly lower than what 

is seen in GaAs based PC switches.  So there is still a strong push for a 1550 nm PC 

switch with power output comparable to 800 nm PC switches.  The rest of this chapter is 

dedicated to an exciting, powerful, and novel method of generating THz power on GaAs 

PC switches with 1550 nm photons.

2.2. Investigating ErAs:GaAs

Further analysis of semiconductor physics reveals that other photoconductive 

mechanisms (besides intrinsic) could work for photocurrent generation.  Mid-band-gap 

energy levels (abundantly present in most ultrafast materials), in addition to aiding 

recombination, can also be used for photo-carrier generation [1], [2], [4].  Usually this 

type of carrier generation is characteristic of extrinsic photoconductivity (Fig. 12b), 
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where the carrier transition (hole or electron) is from a mid-gap level to one of the bands 

(valence or conduction).  This current generation process is linear with incident optical 

power, one photon will excite one carrier, and therefore extrinsic photoconductivity 

would be characterized by a linear increase in conductivity with laser power.  This is 

shown in Eq. 5, where g is the photoconductive gain, e is the charge of an electron, P is 

the incident light power, h is Planck's constant, and ν is the light frequency.  The reason 

this photoconductive mechanism could be useful is that less photon energy is needed to 

excite a carrier from a mid-bandgap energy level, compared to cross-gap 

photoconductivity.  This means that a longer wavelength can be used to generate 

photocurrent, possibly including 1550 nm.  Extrinsic photoconductivity previously had 

been shown to work for generating high power signals on the 10 ps scale with a semi-

insulating-GaAs PC switch and a 1550 nm laser [55], but it had not yet been tried with 

ErAs:GaAs.  
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Figure 12: Photoconductive mechanisms.  (a) Intrinsic (or cross-
gap) photoconductivity.  This is traditionally how PC switches are
used.  (b) Extrinsic photoconductivity. (c) Two-photon 
photoconductive process.  (b) and (c) represent sub-band-gap 
processes [56].
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I= geP
h ν

(5)

In another study, THz light

creation was attempted using a

different sub-band-gap

photoconductive mechanism: two-

photon absorption (TPA)

(Fig. 12(c),13) [56].  In this process,

the carrier must absorb two photons in

immediate succession to gain enough

energy for a cross-gap transition.  This

mechanism is a nonlinear process and

requires that the incoming photon

energy be near the half band-gap

energy level of the photoconductor, as is the case with 1550 nm lasers and GaAs (0.8 eV 

vs. 0.71 eV).  The characteristic behavior of TPA is illustrated by Eqs. 6 and 7, which 

show the two-photon transition rate from the valence band to the conduction band (6), 

and the absorption of light intensity at some distance (z) into the semiconductor (7).  The 

Hamiltonians in 6 will be constant, h is Plancks constant, ν is the incoming light 

frequency, E is energy and c,v, and i correspond to the conduction, valence, and 

intermediate bands.  The equation for W2 shows that as the photon energy moves away 

from the center of the bandgap the pump rate should decrease quadratically, so getting 
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Figure 13: Two-photon absorption (TPA) 
characteristics.  (a) The change in photocurrent 
with laser intensity [57].  (b) The decrease in 
pumping rate as photon energy deviates farther 
from the mid-band-gap.
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close to the middle of the bandgap is crucial (Fig. 13(b)).  In Eq. 7, the two-photon 

absorption coefficient (β) is proportional to the incoming light intensity (I).  So the 

photocurrent generation should increase quadratically with intensity, this is exactly what 

is observed experimentally in Fig. 13(a) [57], [58].  Because it is a nonlinear process two-

photon absorption has low quantum efficiency, but it was used to successfully created 

some THz radiation, but it was impractically weak compared to state-of-the-art 800 nm 

PC switches [6], [57], [59].  Nevertheless, the benefit of using both 1550 nm laser 

components and relatively wide-band-gap semiconductors together is still very appealing.

1550 nm components and lasers are relatively inexpensive, while wide-band-gaps can 

enable much higher THz power levels because of their higher EB.  

W 2=
1

(2π)2h
∫∣∑i

⟨Ψc Hا eR Ψا i 〉 ⟨Ψ i Hا eRاΨv 〉

E i−E v−hν

2

∣δ(E c(k )−E v(k )−2h ν)d 3 k (6)

dI
dz
=−(α+β I ) I (7)

One material that appeared to meet all requirements for extrinsic 

photoconductivity, but had not yet been tried, is ErAs:GaAs.  As described earlier, this 

material not only contains a high density of mid-gap energy levels, but the defects that 

create these energy levels don't disrupt the GaAs lattice greatly.  Consequently, 

ErAs:GaAs is known to have very fast recombination time as well as good mobility.  

Furthermore, previous research has proven that ErAs:GaAs readily absorbs 1550 nm 

photons, as well as other sub-band-gap wavelengths (Fig. 14) [60].  So this material 
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should be an ideal candidate for extrinsic or two-photon photoconductivity.   

 2.2.1. Discovery: THz generated with extrinsic photoconductivity in 
ErAs:GaAs

While conducting the work presented in Chapter III, a new fast-scanning THz 

spectrum analyzer, a THz PC switch was needed for taking spectral measurements.  

Originally an 800 nm6 drive wavelength, ErAs:GaAs PC switch (identical to that in Fig.

8) was to be used for this experiment, but during experimental setup it was discovered 

that THz power could be generated with an ultrafast 1550 nm fiber-laser7.  This discovery

not only provided a usable PC switch for spectral measurements, but also represented a 

major breakthrough in THz PC switch technology by finally creating a practical 1550 nm 

6 In literature the drive wavelength will often be quoted as 780 nm as well, either works.  800 will 
always be quoted here for consistency.

7 The results from this study were published in Optics Express [5]. 
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Figure 14: Sub-band-gap absorption characteristics of 
ErAs:GaAs.  While 1550 nm absorption is low compared to
other wavelengths, it is still significant.
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driven PC switch.    

The experimental diagram of the PC switch testing can be seen in Fig. 15.  From 

left to right, the 1550 nm fiber-laser was a “Mercury” model erbium-doped-fiber-

amplifier (EDFA) from Polaronyx Inc. [40] with a pulse width of ~0.3 ps, maximum 

average power of 140 mW, and a pulse repetition rate of 49MHz.  The laser was output to

free-space with a standard fiber-to-free-space coupler and then chopped at 8 Hz for easy 

THz power and photocurrent measurement.  A 10x microscope objective was then used to

focus the 1550 nm pulses onto the driving gap of the PC switch.  The ErAs:GaAs layer 

used for this study consisted of a 1.0-micron thick, homogeneous 1%-Er-bearing GaAs 

film grown by molecular-beam epitaxy on a semi-insulating GaAs substrate.  The PC 

switch (Fig. 8), biased by an 80 V tunable-DC-power supply, consisted of a 9×9 micron 

gap at the center of a 3-turn square-spiral antenna.  THz radiation emanating from the 

spiral antenna was coupled into free space using a high-resistivity silicon hyper-

hemispherical lens.  For THz power detection, four different detectors were used at 

various stages, each of these was fed into a lock-in amplifier for data collection.  At the 

same time, photocurrent was monitored with an oscilloscope by measuring the voltage 

across a known resistor in series with the PC switch.  
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The first step in this experiment was to illuminate the biased PC switch with the 

1550 nm laser and see if any photocurrent was generated.  This would be a telling step for

the whole experiment; if any photocurrent was observed at all, then a sub-band-gap 

photoconductive process must be occurring.  To start this step, the laser needed to be 

aligned onto the PC switch gap.  This is a painstaking process; the 1550 nm photons are 

not visible and if the laser is focused onto the contact pads of the antenna, rather than on 

the antenna itself, the PC switch can experience catastrophic failure.  So to start, the laser 

was intentionally defocused so that it illuminated the entire PC switch antenna.  This way

the irradiance of the laser would be reduced enough to prevent device failure if the 

contact pads were illuminated by mistake.  Then the PC switch (mounted to an X-Y-Z 

stage) was moved into the beam path of the laser while the photocurrent was monitored 

on an oscilloscope.  Immediately a very exciting result was obtained; while the laser was 

still defocused photocurrent was already observed on the oscilloscope.  The laser was 
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Figure 15: PC switch setup block diagram.  This setup was used for the initial discovery
of THz power generated with an ErAs:GaAs PC switch and a 1550 nm fiber laser.
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then brought into focus so performance metrics could be recorded.

Several measurements were taken to thoroughly characterize the PC switch 

performance in this experiment, since later this would allow for careful examination of 

the physical mechanism behind the results.  The first measurement taken was the DC 

photocurrent vs. bias voltage VB with the laser power fixed at the maximum power of 140

mW.  The results are shown in Fig. 16(a) and as expected the photocurrent goes to zero as

VB goes to zero.  As VB increases, the photocurrent increases nearly linearly, consistent 

with the current increasing (nearly8) linearly with the electric field (Eq. 4).  Fig. 16(b) 

shows the DC photocurrent vs. average laser power at a constant VB of 77 V (the 

maximum voltage of the power supply used).  Here, the photocurrent curve is concave 

down at low laser power (<10 mW) but as laser power increases above 10 mW the 

photocurrent curve becomes linear.  This is in contrast to the quadratic-up behavior 

displayed LT-GaAs PC switches driven at 1550 nm [57] and GaAs based PC switches 

operating at 800 nm.  The photocurrent responsivity from Fig. 16(b) at the lowest laser 

8 Sometimes the increase is concave up because the carrier mobility can increase slightly with bias 
voltage [6].
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Figure 16: (a) Photocurrent vs. bias voltage with 140 mW of 1550 nm laser power.  (b)  
Photocurrent vs. average laser power at a fixed DC VB (77 V).

55



power (10 mW) is ℜ ≈ 5 μA/mW but at the highest power drops to ℜ ≈ 1 μA/mW.  The 

responsivity at high power is only about 4 times less than what is seen with the exact 

same PC switch driven with an 800 nm laser, at the same VB.  The fact that so much 

photocurrent was measured suggests that measurable THz power should be produced. 

This assumes, of course, that the bandwidth associated with the new photoconductive 

mechanism is comparable to that of the traditional intrinsic, cross-gap effect.  

Next, THz power measurements were taken from the PC switch, starting with a 

broadband, calibrated LiTaO3 pyroelectric detector.  To prevent 1550 nm laser power 

from being detected a 0.01 inch black polyethylene window was placed in front of the 

pyroelectric detector.  Black polyethylene will block 1550 nm and thermal IR radiation, 

but is ~90% transparent at ~1.0 THz.  The experimental results for broadband THz power

vs. VB and laser power are shown in Figs. 17(a) and 17(b), respectively.  The y-axis in 

both plots is the root-mean-squared (RMS) lock-in amplifier readings in Volts.  
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Figure 17: (a) AC signal (rms) from THz pyroelectric detector vs. bias voltage with a 
constant laser power of 140 mW.  (b) AC signal (rms) vs. 1550 nm average laser power 
at a constant bias voltage of 77 V.  
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Correcting for the RMS reading, the equivalent peak-to-peak reading was 520 mV 

(confirmed on an oscilloscope).   The pyroelectric detector used for this measurement has

a calibrated, broadband external responsivity of ~5000 V/W between 0.1 and 1.0 THz; 

therefore, the maximum power measured from the PC switch is ~105 μW (520 mV / 5000

V/W).  This is quite comparable to the broadband THz power measured from an identical

PC switch (with the same ErAs:GaAs material)  driven at 800 nm, with the same VB, but 

driven with an average laser power of 25 mW [7].  This means that the new 1550 nm 

drive mechanism is about 5 times less efficient in terms of THz-to-laser power ratio 

(however there may be a way to compensate for this, as will be discussed shortly).  The 

behavior of both plots in Fig. 17 is also slightly different than what is observed in an 800 

nm driven switch.  The bias dependence (Fig. 17(a)) is close to quadratic (see equation 

for curve fit) and the laser power (Po) dependence is lower, PTHz ≈ Po
1.6.  With 800 nm 

drive, the laser power has a larger effect on PTHz, compared to VB; a fact that makes sense 

considering that in intrinsic operation the photocurrent in the PC switch increases nearly 

quadratically with laser power, whereas here the increase is linear. 

With the pyroelectric measurements confirming that large amounts of THz power 

were being generated, the next step in characterizing the 1550-nm-driven PC switch was 

determining the bandwidth.  To get a rough estimate of the bandwidth, power 

measurements were taken using a set of three zero-bias Schottky-diode rectifiers that 

were mounted in rectangular waveguides, operating in three distinct bands centered 

around 92 (W-band), 415, and 675 GHz.  These rectifiers act as band-limited filters with 

very sharp low-frequency turn-on (waveguide cutoff) and more gradual high-frequency 
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roll-off.  Because the external responsivity, noise equivalent bandwidth, and effective 

aperture  (each detector was coupled to a diagonal feedhorn) of each Schottky was 

known, discrete estimates could be determined for the THz power at the center frequency 

of each detector.  The discrete power estimates are calculated by PS = VD/ℜ and then 

normalized to each detectors bandwidth and effective aperture by PSN = PS/Aeff/β, where 

VD is the detector reading, Aeff is the effective area of the detector, ℜ is the responsivity of

the detector (V/W), and β is the detector bandwidth.  

The bandwidth is then obtained by fitting the discrete power measurements to a 

single-pole Lorentzian function, S(f) = A[1+(2πfτ)2]-1, where A is a fitting constant and τ 

is the photocarrier lifetime.  This has been found to be a good fit to the THz power 
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Figure 18: Bandwidth calculation using spot frequency power estimates 
taken with 92, 415, and 675 GHz Schottky diode rectifiers at a constant VB

of 77 V and constant 1550 nm laser power of 140 mW.  
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spectrum of PC switches whose photocarrier lifetime is significantly longer than the RC 

electrical time constant – a likely condition in this case since the gap capacitance of the 

switch is << 1 fF.  For the data in Fig. 18, the best fit occurs when A = 1.08 and τ = 0.45 

ps, which corresponds to a -3 dB frequency-domain bandwidth of B = (2πτ)-1 = 354 GHz.

This bandwidth is comparable to the bandwidth deduced from 800 nm time-domain 

measurements for an identical type of PC switch (with the same ErAs:GaAs material) 

[61].  However the laser pulse in this 1550 nm experiment was 300 fs, considerably 

longer than that used in the 800 nm experiments, so the fundamental PC switch 

bandwidth could be even higher than 354 GHz.  

The results from this discovery are all consistent with the new photoconductive 

mechanism in the 1550 nm driven PC switch being extrinsic photoconductivity, rather 

than the traditional intrinsic photoconductivity used in PC switches up to this point.  

Extrinsic photoconductivity, as shown in Fig. 12(b), is a linear process (Eq. 5) 

distinguished by a carrier transition from a localized-impurity or defect energy level to 

one of the energy bands (conduction or valence), and then subsequent unipolar 

photocarrier transport (electron or hole) within that band [1], [2], [4].  It is well known in 

doped semi-insulating GaAs and has long been utilized to make high-power PC switches 

operating at the ~10 ps time scale [55].  Through the growth conditions discovered in 

Refs. [45], [46] and described earlier in this chapter, the present PC switch material 

contains ErAs in the form of crystalline nanoparticles and substitutional defects, and 

these impurities are associated with a very large density of energy levels near the middle 

of the GaAs bandgap.  This explains the sub-ps electron-hole photocarrier recombination 
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time in intrinsic operation, and should explain the fast extrinsic operation through a large 

capture cross section for electrons and holes, as the case may be.  As shown in Fig. 14, 

the ErAs energy levels have also been found to display sub-band-gap absorption that 

reaches a peak strength around λ = 2.5 μm, either through a particle-plasmon [60], or 

quantum dot resonance [5].

From the work presented here, the exact absorption mechanism could not be 

determined exactly.  Nevertheless, it certainly creates abundant photocarriers, which in 

turn exhibit good electric transport (i.e. good mobility) and the sub-ps lifetime necessary 

to generate useful levels of THz radiation in PC switches.  In GaAs this would suggest 

electrons rather than holes because of their superior band transport.  In any case, the 

absorption coefficient is likely much weaker than the cross-gap value around 800 nm, 

which is typically ~104 cm-1.  This would partially explain the 4-times lower external 

photocurrent responsivity and 5-times lower laser-to-THz conversion efficiency of the 

1550 nm driven switch.  But lower absorption has a beneficial aspect which is more 

gradual photocarrier and thermal generation with depth than normally occurs in GaAs PC

devices.  This should help improve the reliability and allow for higher drive power, which

are often limited by electric and/or thermal stress at the surface of planar PC devices.   

And the oft-stated fact remains that 1550 nm photons are much more affordable than 800 

nm photons, and much easier to route and control via the wide variety of active and 

passive components available from the fiber-optic telecomm, industry.  Because of this 

the lower laser power-to-THz conversion efficiency problem can be compensated for by 

adding more laser power (as done here) while still reducing the cost of the drive 
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components.

The discovery made in this work has shown that an ErAs:GaAs PC switch can 

produce useful levels of THz power when driven by an ultrafast 1550 nm fiber MLL.  

The external responsivity and THz generation efficiency are lower than those in the same 

PC switch driven by 800 nm sub-ps pulses, but the absolute THz power level is 

comparable.  The likely mechanism for the 1550 nm excitation is extrinsic n-type 

(electron) photoconductivity from the ErAs-impurities to the conduction band, although 

more research is needed to prove this unequivocally.  To further understand and improve 

upon the discovery made in this section more experiments were then planned.  

 2.2.2. Testing extrinsic photoconductivity in ErAs:GaAs at 1030 nm

The first additional experiment was testing the ErAs:GaAs PC switch at another 

common sub-band-gap telecomm wavelength, 1030 nm.  Ultra-fast lasers at this 

wavelength are also readily available and inexpensive.  The goal of this experiment was 

to confirm the extrinsic photoconductive effect, as opposed to other possible mechanisms,

such as two-photon absorption (Fig. 12(c).  Therefore, the experiment at 1550 nm was 

fully repeated with an ultra-fast 1030 nm laser (YDFA – ytterbium doped fiber amplifier).

Assuming that the deep-level energy states lie at the middle of the GaAs bandgap, the 

extrinsic effect should only require half of the GaAs band-gap energy, ≈ 0.71 eV below 

the conduction-band edge.  The 1550 nm photons used in the initial discovery provide 

just over half (~0.80 eV), so can be absorbed by deep-level-to-band transitions, or by 

cross-gap two photon absorption [57].  In contrast, the 1030 nm photons (~1.20 eV) 
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should still exhibit strong deep-level-to-band transitions, but weaker two photon 

absorption by about 30x (as seen on Fig. 13(b)).  

The experimental setup for this test was exactly the same as in Fig. 15, but with 

an ultra-fast (190 fs pulse width) 1030 nm laser.  The PC switch used was also exactly the

same as the 1550 nm test.  Earlier work (Fig. 14) showed that the defects created by the 

erbium doping process exhibit good sub-band-gap absorption with a minimum in the 

measured range at 1.5 μm, so sub-band absorption should be present and possibly slightly

higher for the 1030 nm laser [60].  For equal comparison between the 1550 nm and 1030 

nm wavelengths, the PC switch was illuminated with the same average power level of 

140 mW (although the YDFA could output up to 1.1 W average power).  This power 

limitation was also used to guard against damaging the PC switch, since the maximum 

laser power it could withstand was not known.  Laser power measurements were taken 

with a standard thermopile type optical power meter.  

The first test done for this experiment was generating and measuring the 

photocurrent in the PC switch vs. 1030 nm laser power, with a fixed bias voltage of, 

again, 77 V, the result from this test is shown in Fig. 19.  Photocurrent was indeed excited

by the 1030 nm laser and interestingly it also exhibited quasi-linear behavior at high laser

power, with a maximum value of 44.9 μA.  Therefore, the responsivity with 1030 nm 

drive is ℜ ≈ 0.32 μA/mW, about 1/3 of the responsivity at 1550 nm.  This linearity and 

magnitude of this photocurrent curve supports the interpretation of this new 

photoconductive effect as extrinsic photoconductivity.  The current responsivity is ~10× 

higher than predicted by TPA theory.  However, with the 1030 nm drive laser no THz 
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power could be measured from the calibrated THz pyroelectric detector, or from the 

Schottky diode detectors, suggesting that the photocarrier lifetime associated with the 

extrinsic photoconductivity is very sensitive to laser drive wavelength.  

This result confirmed that a strong photoconductive effect occurs in an 

ErAs:GaAs PC switch at both 1550 nm and 1030 nm sub-band-gap wavelengths.  

Although the effect is somewhat weaker at 1030 nm, the DC photocurrent that was 

produced in the PC switch was large enough to produce measurable THz power, 

assuming the carrier lifetime is well under 1 ps.  However, no THz power could be 

measured from the PC switch when driven at 1030 nm.  This suggests that the 1030 nm 

drive PC switch yields a much slower extrinsic photoconductivity, perhaps because the 

1030 nm photon energy creates photocarriers well above (or below) the band edge.  This 

lengthens the photocarrier lifetime and therefore hinders THz generation.  The reason that

photocarrier lifetime would be lengthened by excess photon energy can be seen 
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Figure 19: DC photocurrent vs. average 1030 nm laser power at a fixed bias
voltage of 77 V, in an ErAs:GaAs PC switch.
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graphically in Fig. 20.  The carrier must first lose the excess energy given to it by 

scattering in the crystal lattice, until it nears a band edge [2].    The results from this work

were presented to the THz community [62].

 2.2.3. The effect of Erbium doping concentration

The next experiment was done with the aim of optimizing the performance of the 

1550 nm extrinsic ErAs:GaAs PC switch.  In the initial discovery and the 1030 nm tests, 

the ErAs:GaAs epitaxial layer was 1% Er bearing, as estimated by the MBE growers.  

For this experiment, PC switches with identical square spiral antennas were built on a 

new epitaxial layer that was 2% Er bearing.  Having a different concentration of erbium 

in the photoconductive layer could have several effects.  For example, a higher 

concentration of energy levels in the bandgap could increase the on-state conductivity of 
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Figure 20: An extrinsic photoconductive process with excess energy given to 
the carriers.  Before recombination can take place the carriers must relax 
back to the band edge.  The top half of the diagram would be n-type, the 
bottom half would be p-type.
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the photoconductive layer, by increasing the number of carriers added by the laser pulse 

(∆n in Eq. 4).  Another possibility is that the additional ErAs defects could begin to 

disrupt the GaAs crystalline structure, thus shorting the mean-free-time (5) and reducing 

carrier mobility.  This outcome would reduce the THz power produced by the PC switch. 

Yet another option is that the additional ErAs nanoparticles could increase the number of 

mid-band recombination centers, which should aid in decreasing carrier lifetime [2].  

Since little was known about the new extrinsic operation of ErAs:GaAs, this 

observational study would increase the understanding of the material, but it was believed 

that the additional Er doping would increase the on-state carrier concentration (∆n) of the 

photoconductor, and thus the photocurrent in the PC switch.  

To conduct this study, the two PC switch types were inserted into the exact same 

experimental setup, this way experimental bias would be minimized.  The experimental 

setup is again identical to that seen in Fig. 15, but this time a different 1550 nm ultrafast 

laser was used with an optical pulse width of 130 fs, a maximum average power of 90 

mW, and a 56 MHz pulse repetition rate.  To test the THz performance of the PC 

switches, broadband power measurements were taken and the same three band-limited 

zero-bias Schottky detectors (92, 415, and 625 GHz) were used to estimate the frequency 

bandwidth.  Once again, the collected signals were amplified with a 30 dB LNA and then 

detected with a low-noise lock-in amplifier.  

The first measurement to compare is the broadband power from each PC switch.  

This measurement, like every THz power measurement in this experiment, was taken 

with the maximum average laser power (90 mW) and 77 V bias.  In this measurement, 
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the 2% Er bearing PC switch was producing more broadband power than the 1% Er 

bearing device, 40 μW vs. 30 μW.  Next, the bandwidth estimation was performed using 

the Schottky detectors (Fig. 21), calculated identically to the initial discovery on page 37.

The fitting procedure yielded estimates for the -3 dB bandwidth of B = (2πτ)-1 = 145 GHz

for the 1% Er PC switch and B = (2πτ)-1 = 200 GHz for the 2% Er PC switch.  These 

values were lower than expected, but could be a result of experimental conditions 

(inferior laser performance, PC switch degradation, or misalignment of the beam on the 

PC switch antenna).  In any case, they were repeatable and the broadband power levels 

were very comparable to many contemporary PC switches.  The average power of this 

laser was quite a bit lower than the laser used in the initial discovery as well (90 mW vs. 

140 mW), so it is possible that bandwidth could improve as laser power increases, and 

the broadband power would certainly increase greatly.  
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The results from this experiment suggest that the PC switch with higher Er 

concentration (2%) is a superior device.  The broadband power collected with the 

pyroelectric detector is higher and the photocarrier lifetime is slightly shorter, enabling 

superior bandwidth.  This suggests that increasing the Er concentration in the 

photoconductive layer had not degraded the quality of the crystal structure in any 

significant way.  At the same time, the carrier-lifetime had been shortened, likely a cause 

of a higher density of trapping levels deep in the GaAs band-gap.  It is also likely that the 

change in carriers between the off- and on-states increased (more were available), thereby

increasing the on-state conductivity, and improving THz-to-laser power efficiency.  The 

results from this study were important because they provided further proof that extrinsic 

photoconductivity is a practical method of THz generation, and improved on it.  As such, 
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Figure 21: The estimated power spectrum from both the 1% and 2% Er doped 
ErAs:GaAs PC switches.  The 2% switch had a broader bandwidth in this 
experiment.  Note that both power curves are normalized to the 92 GHz values.
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this work was presented to the THz community at the International Conference on 

Millimeter THz and Infrared waves [63].

 2.2.4. Measuring ErAs:GaAs responsivity vs. wavelength

Next, to understand where the mid-band-gap energy levels were located within 

the band-gap, and to find which wavelength might be the most efficient for extrinsic 

photoconductive ErAs:GaAs excitation, another experiment was performed.  This testing 

would measure the photocurrent responsivity at many more wavelengths compared to the 

previous experiment conducted with the 1030 nm ultra-fast laser, a combined wavelength

range ~950 nm would be tested in total.  For this experiment, a broadly tunable 

wavelength laser was needed, so a discretely tunable (1 nm step size) optical parametric 

oscillator (OPO) was used.  The wavelengths generated from this laser included 1535 to 

1793 nm and 2516 to 3293 nm; which corresponds to photon energies of 0.69 to 0.81 eV 

(0.48 to 0.57 UG) and 0.37 to 0.49 eV (0.26 to 0.35 UG).  The two different Er 

concentrations (1% and 2%) were both tested in this experiment, to determine if there are 

any significant band differences between the two photoconductive layers.  

The setup had to be slightly different here, compared to the previous experiments 

(Fig. 22).  The width of the OPO pulses was very long (> 1 ns), which forces the antenna 

pulse width to be at least this large, and hence the bandwidth would be well below the 

THz region.  So THz detectors were not needed, but the photocurrent response vs. 

wavelength could still be measured in a sub-band-gap wavelength range that was 

previously unexplored.  A 1047 nm notch filter was also included in the experimental 
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setup to block leakage from the OPO pump laser.  Aside from these two changes the 

experimental set up was identical to Fig. 15, and the laser power was again measured 

with a thermopile power meter for each wavelength.  The laser pulses from the tunable 

OPO also had an extremely large peak power.  Because of this the PC switches were 

destroyed if the laser was focused completely onto the PC switch gap.  To combat this the

laser simply wasn't focused.  This prevented absolute photocurrent measurements (hence 

the normalized curves in Figs. 23, 24), but the qualitative photocurrent responsivity 

difference between wavelengths could still be determined.  

The results for both the 1% and 2% Er bearing PC switches are shown in Fig 23.  

Very interesting behavior is immediately noticeable, where several peaks in the 

photocurrent can be observed across the high-energy wavelength range (1535-1793 nm).  

These peaks were attributed to ErAs nanoparticles, sitting at slightly different energy 

levels, behaving like quantum dots [45].  Another compelling result is that the peak of the
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Figure 22: The experimental setup for measuring the extrinsic photocurrent 
response vs. wavelength in two ErAs:GaAs PC switches.  The 1047 nm notch 
filter was present to block any leakage from the OPO pump laser.
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photocurrent was not seen in the available wavelength range (unless it happens to be at 

1535 nm).  However, because of the known lower responsivity measured in the 1030 nm 

experiment, there must be a responsivity peak somewhere between 1030 and 1535 nm.  

Another interesting result illustrated in Fig. 23 is that the two responsivity curves 

have nearly an identical shape.  This means that the ErAs nanoparticles are likely 

arranging themselves in the GaAs crystal lattice similarly at both doping concentrations, 

and it also means that the higher doping concentration is not causing degradation of the 

GaAs crystalline structure.   The responsivity for the low-energy wavelengths (2516-3293

nm) is shown in Fig. 24.  The photocurrent response at these wavelengths was flat and 

very low.  In fact, any response that was measured is likely caused by 1047 nm light 

leaking through the notch filter.  This was an expected result because the photon energy 

from these long wavelengths is very small, and probably too small to cause defect-to-

band carrier transitions.  
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Figure 23: The normalized photocurrent responsivity vs. wavelength for both the 
1% and 2% Er bearing PC switches in the 1535 to 1793 nm wavelength range.
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The results from this experiment suggest that the most of the ErAs energy level 

defects do not sit directly in the middle of the GaAs band-gap, but somewhere on either 

side (likely closer to the conduction band) because the peak responsivity levels are not at 

the mid-band wavelength (1747 nm).  However the energy levels are still deep in the 

band-gap, because the longer wavelengths did not create photocurrent.  Interestingly the 

results do not seem to change significantly between the two Er concentrations that were 

measured.  This means that ErAs nanoparticles are likely being formed in a similar way 

in both devices.  These results, combined with the results of the 1% vs. 2% Er THz 

performance study in the previous section, mean that even higher Er concentrations might

be a pragmatic step for extrinsic photoconductivity in ErAs:GaAs PC switches, because 

performance only improved at 2% Er doping (assuming the GaAs crystalline quality is 

maintained).  These results further confirm that this is extrinsic photoconductivity 

because responsivity did not increase at the half-band-gap wavelength, and also helped to

further the knowledge of extrinsic photoconductivity in the THz field.  As such, they 

were presented to the THz community at the International Conference on Millimeter THz

and Infrared waves [64].
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 2.2.5. The first photomixing experiments on ErAs:GaAs at 1550 nm

The last experiment presented in this section was done for two primary reasons: 

(1) to help verify that the sub-band-gap process in ErAs:GaAs is indeed extrinsic 

photoconductivity and not two-photon absorption, and (2) to take the first steps towards 

developing a new 1550-nm-driven frequency domain spectrometer.  For this experiment, 

a photomixer was built on the same (2% Er) ErAs:GaAs material and initial tests were 

conducted to see if continuous-wave (CW) 1550-nm photons could generate photocurrent

in the photomixer.  The design of a photomixer is essentially identical to a PC switch, but

smaller “fingers” are fabricated in the drive gap of the PC switch.  An entire chapter 

could be written on photomixer design but that is not the focus of this work.  The 

important factor here is if CW radiation can create photocurrent in the device.  This is 
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Figure 24: The normalized photocurrent responsivity vs. wavelength for both the 
1% and 2% Er bearing PC switches in the 2515 to 3216 nm wavelength range.
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important because two-photon absorption is a non-linear process and as such it requires 

very high peak laser power, such as seen in mode-locked lasers [59].  On the other hand, 

extrinsic photoconductivity is a linear process and should respond with the photocurrent 

proportional to CW laser power.  So, if photocurrent is indeed generated, then the 

photoconductive mechanism must be extrinsic.  

The experimental setup here is exactly the same as Fig. 22, except the PC switch 

is replaced with a photomixer, and the OPO is replaced by a CW 1550 nm laser, 

delivering a maximum average power of 60 mW.  To create an AC signal that could be 

easily detected the CW laser beam was electronically chopped with a fiber-optic 

modulator at 4 kHz.  Photomixers can not withstand VB levels as high as a PC switch, so 

in this work the maximum VB was 20 V.  

First, the laser was focused in on the photomixer (with the same precautionary 

procedure described on page 31) while it was biased, and immediately an positive result 

was obtained; photocurrent was observed.  This result was gratifying, because it proved 

the extrinsic photoconductive effect.  The next step was characterizing the photocurrent 

generation as a function of laser power and VB.  Fig. 25 shows the result from this test 

and the photocurrent increases linearly with bias voltage, just as it did in the PC switch 

experiments.  Again, this is consistent with Eq. 4 In that the photocurrent should increase 

linearly with electric field.  

Next, the photocurrent was measured as a function of input laser power and again 

the increase in photocurrent was linear (Fig. 26), just as in the PC switches, and 

suggesting extrinsic photoconductivity.  The only noticeable difference in behavior is that
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the low laser power measurements are also linear, instead of concave.
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Figure 25: The measured photocurrent vs. bias voltage in a 2% Er bearing 
photomixer.

Figure 26: The measured photocurrent vs. 1550 nm laser power in a 2% Er 
bearing photomixer.  
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The results from this experiment confirm that the sub-band-gap photoconductivity

discovered in this work in ErAs:GaAs is extrinsic, and is easily strong enough to generate

useful THz power.  Here only one laser was used to drive the photomixer, just to measure

the responsivity.  Because this experiment was successful, a 1550 nm photomixing, fiber-

based frequency-domain spectrometer could be built with these photomixers.  This is 

likely another Ph. D. dissertation worth of work in and of itself, so is an excellent project 

for future work.  The first photocurrent generation in ErAs:GaAs at 1550 nm is a new 

discovery and as such is imminently publishable in a peer-reviewed journal once the first 

photomixing results have been obtained.

2.3. A summary of ErAs:GaAs based extrinsic photoconductive THz sources

A new technique of generating THz power was presented here and is very 

promising.  The results show that it can produce THz power levels and bandwidths 

comparable to current PC switches at both 800 and 1550 nm drive wavelengths [5], [6], 

[48], [50], [53].  This technique could be a superior choice from a pure performance 

standpoint with further advancement.  An example may be increasing the Er 

concentration past 2%.  One of the key reasons that extrinsic photoconductivity has so 

much promise is that GaAs has a much higher critical breakdown field, compared to 

other 1550 nm driven PC layers such as InGaAs, by about 5x.  At this point, the 

maximum safe driving conditions have not yet been determined either.  It is likely that the

ErAs:GaAs PC switches could be reliably biased at 100 V and the maximum laser power 
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that could be used is unknown, but certainly at least as high as 140 mW.  The OPO 

experiments suggest that a very high repetition rate laser should be used as well, so that 

the peak laser power is lower (eq. 8 where Pave is the average laser power, fr is the pulse 

repetition frequency, and tp is the pulse width).   This way, the PC switches will not be 

destroyed by extremely high peak powers.  It is also known that ErAs:GaAs does not 

absorb 1550 nm photons as efficiently as it absorbs 800 nm photons.  Therefore, 

techniques that increase the number of passes of photons through the material (e.g. 

vertical optical cavities) will increase absorption and could enhance PC switch 

performance.  This has been demonstrated previously for 800 nm wavelengths so it is 

likely possible [6].

P peak≈Pave /( f r∗t p) (8)

From a more practical viewpoint, operating ErAs:GaAs PC switches with 

extrinsic photoconductivity is also superior because the 1550 nm lasers and components 

are less expensive and more readily available than their 800 nm counterparts.  For 

example, the 140 mW 1550 nm laser used in the initial discovery cost ~$15000; to create 

800 nm photons this laser had to be frequency doubled with a non-linear crystal, a 

component that increases the price by 50% or more [40].  Taking advantage of fiber-optic

components should also reduce setup time and sensitivity of THz systems as well, since 

fewer free-space optical components will be necessary.

This discovery represents a significant, important, and new advancement for the 

THz field.  However, the work done here, particularly on THz spectrum measurement, 

highlighted the need for a better THz spectrum analyzer as well (i.e. the difference 
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between spectral measurement in the initial discovery, and during the 1% vs. 2% Er 

experiment).  As stated at the beginning of this chapter, the extrinsic PC switch discovery 

was made during the process of designing a new THz spectrum analyzer.  This spectrum 

analyzer is different in operating principle from all contemporary designs in the THz 

region and is explained in depth in the next chapter.  Eventually, in Chapter V, the final 

iteration of the new spectrum analyzer design is demonstrated experimentally via spectral

measurements on the new ErAs:GaAs PC switch.  
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 3.  THz spectral analysis using a Fabry-Perot interferometer 

Chapter II covered the advancements made in this research on THz sources.  This 

discovery is certainly an important step for advancing the science and practicality of 

reflective THz spectroscopy because it lowers the cost of creating and controlling THz 

photons.  The use of extrinsic PC switches can lead to new discoveries (and has already 

[54]) and improvements as well, but this discovery serves as a perfect illustration for 

another need: an inexpensive, yet accurate THz spectrum analyzer.  The method used (in 

Chapter II) to determine the THz spectrum, while useful, has some deficiencies, as do 

other spectral analysis methods.  So to more accurately measure the THz spectrum (and 

the output of new sources like the extrinsic PC switch) Chapter III addresses a new type 

of spectrum analyzer based on the Fabry-Perot interferometer [65].  This falls in line with

the research plan (Fig. 27) shown first in Chapter II, and below.  

The dashed box in Fig. 27 presents a visual illustration of what this chapter will 

cover.  First will be a short description of commonly used methods of THz spectral 

analysis, the advantages and disadvantages of each.  Then a novel Fabry-Perot-based 

spectrum analyzer (FPSA) will be presented – it is a promising component that may 

reduce the cost and difficulty of measuring the THz spectrum, especially in stand-off 

configuration (see Fig. 30).  Several design iterations will be shown, and the motivation 

for each design will be explained.  Then some proof-of-concept results will be presented. 

57

78



Several iterations of software were written to control this component and that will also be

discussed.  Next will be an overview of the initial FPSA designs and results.  Finally, 

Chapter III will end with the introduction of a new design concept of the FPSA that uses 

polarizing mirrors.  

3.1. Contemporary THz spectrum analysis techniques and their limitations

The quest for practical THz sources and components for stand-off reflective 

spectroscopy is ongoing and steady progress has been made.  Since the invention of the 

LT-GaAs photoconductive antenna, the THz power available from photoconductive (PC) 

switches has risen from mere nW's to over 1 mW [7], [31].  This huge advancement in 
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Figure 27: Research outline for this work.  Chapter II covered the advances in THz PC 
switches, now this work will present a novel method of measuring the THz spectrum.  
This new method could then be applied to current instruments, devices, and applications.
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available power has lead to the creation of many commercial THz spectroscopy and/or 

imaging systems, a small sample of which can be found in refs. [66], [67].  The PC 

switch advances made in this dissertation will push stand-off THz systems even closer to 

practical commercial use through the use of 1550 nm drive lasers.  As explained in 

Chapter II, 1550 nm technology is considerably less expensive than 800 nm technology.  

Nevertheless, despite the system improvements, there has always been difficulty 

in characterizing new THz sources, detectors, and systems.  This difficulty is evident in 

the THz bandwidth calculations of Chapter II where measurements taken on identical PC 

switches differed by as much as 50%.  These results suggest that the spot frequency 

method used is good for general spectral estimations, but not for final specification.  The 

difficulty in spectral characterization stems from the brevity of THz pulses.  No detectors 

in the world have the rise and fall time needed to measure individual sub-ps scale time-

domain pulses, so other methods must be used.  The problems presented by current THz 

spectral analysis methods have motivated research into a new type of THz spectrum 

analyzer based on a well-known optical device, the Fabry-Perot interferometer.  This new,

low-cost, fast spectrum analyzer could improve the efficiency of THz source and detector

research by simplifying spectral measurements.  The FPSA could be placed in line with 

any source or system and measurements can be taken in minutes (the timescales of most 

human activity).  A bonus of the FPSA design is that it will be a far more practical device 

for use in stand-off reflective spectroscopy; such a configuration is required for real-

world use when the target may not be perfectly still.
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3.2. An innovative spectrum analyzer: The THz Fabry-Perot interferometer

TDS systems, FTIR, and spot frequency measurements approach a single problem

(spectral analysis of a PC switch) in different ways: the TDS and FTIR systems measure 

THz pulse intensity vs. time, while spot frequency measurements are intensity vs. 

frequency.  These time-domain and frequency-domain approaches are often viewed by 

researchers in a proverbial box, where they are completely separate entities.  Yet, some 

enticing possibilities could exist if ideas from these two approaches were used in a 

complementary fashion.  The new spectrum analyzer concept uses exactly this type of 

“mixed” frequency- and time-domain approach to the problem, by using a tunable band-

pass filter to measure nearly discrete frequencies from broadband pulses typically 

associated with time-domain systems, while the band-pass center frequency is scanned.

60

Figure 28: Fabry Perot interferometers.  (a) The etalon, the parallel plates in this type of 
Fabry-Perot are fixed in position because they are opposite sides of a single plate.  
Reflections occur at the air-to-plate interfaces.  (b) The parallel plate Fabry-Perot.  The 
principle with this Fabry-Perot is the same, but two separate plates compose the 
reflective interfaces.  This adds flexibility to the design [65], [68].
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The Fabry-Perot interferometer (FPI) is a simple, common optical interferometer 

composed of two parallel and partially reflective interfaces (mirrors where n ≠ nair).  It is 

similar to an etalon (Fig. 28(a)) but the separation between the two separate reflectors can

be varied (Fig. 28(b)).  However, both rely on the same underlying physics.  The 

difference in refractive index between the FPI mirrors and air will create some level of 

reflectivity (r) for incoming radiation, based on Eq. 9.  Light waves that enter the FPI will

then propagate back and forth between the plates, and any wavelengths that are an 

integral multiple of the round trip path length (L = mλ) will constructively interfere and 

pass through the second mirror with nearly unity transmission.  At the same time, other 

wavelengths can be strongly rejected by means of destructive interference (especially 

when L = mλ/2).  The equations for transmission (T) are shown in fig. 28 [65], [68].

r=∣( n−nair

n+nair

)∣ (9)

An important attribute of band-pass filters is how strongly out-of-band 

wavelengths are rejected, for the FPI this is entirely dependent on the reflectivity of the 

mirrors (more reflective mirrors reject out-of-band signal more strongly).  More reflective

FPI mirrors also pass a narrower selection of wavelengths (narrower line-width) and have

more wavelengths rejected between pass-bands (broader free-spectral range).  A common 

metric used to describe the number of wavelengths a FPI can resolve is finesse (Eq. 10), 

the ratio of free-spectral range to line-width [68].   Higher finesse values mean that the 

FPI mirrors have higher reflectivity, an example of the effect finesse has on transmittance

vs. wavelength is shown in fig. 29.  
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F=
λFSR

λ LW
=π(

√(R)
1−R

) (10)

The transmittance vs. wavelength plot (Fig. 29), for several finesse values, shows 

how an FPI can act effectively as a (multiple) band-pass filter.  Analyzing the 

transmission equation in fig. 28 it becomes apparent that the first band-pass feature 

occurs when L = λ (the plate separation d = λ/2) and every additional band-pass feature 

becomes narrower when plotted against wavelength, this is visible in fig 29 where L= λ is

the right-most feature.  The fundamental mode presents an interesting, useful possibility; 

as wavelengths longer than L as mostly rejected by the FPI.  If the incoming radiation is 

broadband (like from a PC switch), and the detector is broadband (like a pyroelectric 

detector [69]), the total power detected will be mostly from the fundamental band-pass 

mode.  This is because in PC switches the power output rolls off with frequency.  For 

example, the power drop-off between 1 and 0.5 mm wavelengths (band-pass centers in 
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Figure 29: Higher FP mirror reflectance creates higher finesse.  As seen here higher 
finesse values create much narrower band-pass features in a FP.
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Fig 29) from the extrinsic ErAs:GaAs PC switch spectrum measured in chapter II, is >2x.

Therefore, for experimental purposes, it might be possible to assume that the power 

detected with a pyroelectric detector is entirely contained in the fundamental mode.  To 

enhance the result bandpass filters could also be used to eliminate unwanted modes.

An example of how the

tunable THz FPI could be used for

spectroscopy with the PC switches

from Chapter II is shown in Fig. 30. 

First the broadband THz pulses are

generated with the PC switch, then

they are reflected off of some sample

(or through the sample in

transmission mode).  Next the THz

frequencies will be filtered by the

tunable FPI and the signal vs.

frequency measurements will be collected with a broadband pyroelectric detector.  In this 

schematic a static band-pass filter is also shown, these could possibly be added to ensure 

that undesired frequencies are not being measured.  In the case λ >> d radiation can pass 

through the Fabry-Perot without destructive interference, and would show up as false 

signal, then requiring a short-wavelength pass filter.

The next part of this chapter covers the design of the THz FPI, for results the 

reader can advance to page 74.
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Figure 30: A prototypical setup for the FP spectrum
analyzer, in reflection.  This setup includes a band-
pass filter.  This could be added, if desired, to 
increase SNR.
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3.3. Design and initial results of the Fabry-Perot  interferometer

When this work started, a tunable high-speed THz Fabry-Perot spectrum analyzer 

of this type had never been created.  The goal was to use the beneficial properties of the 

FPI described in the previous section and improved on them by making a THz FPI that 

could scan a broad range of frequencies at high speed [70].  To accomplish this 

advancement the tunable FPI was created by using the parallel plate design in Fig. 28b, 

while fixing one of the mirrors, and attaching the other mirror to a linear actuator so the 

mirror separation could be changed.  Next, a new type of FPI mirror was needed; to 

achieve high frequency-selectivity (Finesse) the reflectivity of the mirrors must be very 

high, such as F=61 in Fig. 29.  In optics, materials such as glass or plastic are usually 

used for the mirrors, but these will not work for this application.  Glass is opaque at THz 

frequencies, and the reflectivity of plastics simply isn't high enough.  For example, one 

common optical THz material is Teflon (n ≈ 1.5), the reflectivity is only 20%.  The 

Finesse using Teflon would be 1.75, lower than any curve plotted in Fig. 29 and 

frequency discrimination would be impossible.  Therefore other materials had to be 

considered for the mirrors, a solution came from Radio-Frequency technology. 

The properties of metal-wire meshes is well known in the RF region and they are 

often used to reflect RF radiation, or create Faraday cages, this concept can be applied to 

the FPI mirrors.  Wire meshes will simulate solid conductors to incoming radiation as 

long as the incident wavelength is much larger than the mesh unit cell [71], with this 

condition met all incident waves are reflected by the mesh.  As the mesh becomes closer 

in size to the incident wavelength some radiation begins to leak through.  So by carefully 
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choosing the wire mesh size (unit cell period and wire diameter) it should be possible to 

create highly reflective (> 90%) mesh FPI mirrors for THz radiation.  

Therefore the first task in designing the fast-scanning THz FPI was finding a wire 

mesh with the correct reflectivity between 0.1 and 1 THz.  This work is primarily 

interested in spectroscopy between 0.1 and 1 THz because more power is available from 

a PC switch at these frequencies, there are fewer spectral water lines in this range, and 

there are still many signatures in this range [72].  To achieve the correct reflectivity in 

this spectral range several copper meshes were analyzed, all of which had periods smaller

than the wavelength at 1 THz.  The results are shown in Fig 31. and a mesh with 175 µm 

period and 55.9 µm diameter copper wires was the most appropriate for the THz FPI.  In 

these transmission results the 175 µm mesh had a reflectivity ranging from 95% at 750 

GHz to 99% below 450 GHz, this corresponds to a FPI Finesse > 60 for this spectrum.  
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Figure 31: THz transmission data taken through 3 different copper meshes.  The 175 µm 
mesh proved to be best suited for THz use, with 95% to 99% reflectivity (R = 1-T) across 
the measured spectrum.
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After choosing the THz FPI mirrors, the remaining components of the fast-

scanning tunable THz FPI could be designed.  The areas of the FPI that needed to be 

designed or chosen included: a mounting system for the wire meshes, a slide system to 

ensure that the FPI mirrors move precisely and linearly, a linear actuator to control FPI 

mirror separation, and mounts for the linear actuator and mirrors.  

 3.3.1. Design 1: Sliding bushing-based Fabry-Perot plates with copper mesh 
mirrors

The first step in designing the fast-scanning, tunable FPI was finding a 

mechanical slide system that would allow the FPI mirrors to move precisely, while 

staying very parallel with respect to each other.  For this initial design iteration a 30 mm 

cage rod system was chosen.  The picture of the design in Fig. 32 shows that one of the 

FPI mirrors was fixed, this mirror was mounted to a one inch lens holder.  This was 

chosen because the lens holder has the 30 mm cage rod holes built in, with set screws.  

The cage rods themselves were mounted to this lens holder with the set screws.  
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The tunable mirror was made of the 6061 aluminum alloy because this material is 

very inexpensive, but also robust and light.  A 1-inch hole was cut in the center of the 

mirror, to match the hole in the fixed mirror, and four additional holes were cut for the 

cage rods.  However, because this mirror was intended to move, the holes were cut with 

much larger diameter than the cage rods (which were 6 mm in diameter) and oil-infused 

bushings were pressed into the holes.  This was done so the tunable FPI mirror could 

slide easily (with low friction) on the rods.  This mirror was also attached to a mounting 

plate.  The mounting plate was built for two reasons: to prevent the bushings in the 

tunable FPI mirror from binding and to lower the linear actuator out of the THz beam 

path.  Fig. 33 Shows how the FPI plate could bind from rotational forces acting on the 

bushings, this binding completely prevented the linear actuator from moving the FPI 

plate.  The mounting plate was designed to make contact with the FPI plate only in the 
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Figure 32: First FPI design.  A standard 1 inch lens holder was used for the fixed mirror 
and the tunable mirror was custom fabricated.  The wire mesh "mirror" was superglued 
to the metal frames.
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middle of the plate, thereby reducing rotational binding forces and allowing the linear 

actuator to move the mirror.  Fig. 33 is a side-view of the FPI setup and it also shows how

the linear actuator is lowered out of the beam-path with the mounting plate.  

As mentioned, the two mechanical plates shown in Fig. 33 are where the FPI 

mirrors are mounted, but the mirrors themselves are the wire-meshes presented in the 

previous section.  In this FPI design, the wire meshes were simply laid of the FPI holes 

and glued into place.  In Fig. 32 the mesh on the fixed mirror is visible.  The mesh is 

applied to the tunable mirror in exactly the same fashion and is present in both Figs. 32 

and 33 but the view is obstructed because it is on the side of the tunable plate that faces 

the fixed plate.  Having the wire-meshes facing each other was an important design 

consideration; in order to resolve the fundamental mode of THz frequencies the mirrors 

(meshes) must become very close to each other.  For example, to measure 1 THz the 

meshes must be only 150 µm apart.  Because this design allows the meshes to come into 

contact, the spatial mirror separation necessary for high frequencies could be easily 
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Figure 33: The mounting plate in this design lowered the linear actuator out of the beam 
path and helped the FPI slide more smoothly by reducing rotational binding.
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achieved.  

For precision control of the FPI mirror separation a linear actuator from Zaber 

Technologies Inc. was used [73], this actuator is pictured in Figs. 32, 33.  When choosing 

the linear actuator there was three primary considerations: 1) The minimum step size 

must be small enough to resolve frequency differences of a few GHz or less.  2) The 

maximum movement speed must be fast enough to record scans quickly, one of the goals 

was to scan a spectrum in less than three seconds.  3) The linear actuator must be 

programmable.  The frequency resolution requirement dictates a step size of ~1 µm.  For 

example, at low frequencies, such as 100 GHz, a 1 µm change in mirror separation will 

correspond to a frequency-center change of ~0.1 GHz, and at 1 THz the frequency-center 

change will be 6.6 GHz.  This resolution at the low end of the spectrum would be greater 

than most current spectral analysis methods, while at higher frequencies the resolution 

would be similar to what is currently seen in many TDS systems [67].  

The maximum movement speed is dictated by the displacement that the linear 

actuator must cover.  100 GHz was intended to be the lowest frequency measured with 

the PFI, this corresponds to a plate separation of 1.5 mm.  Frequencies higher than 100 

GHz are then measured as this plate separation decreases, until eventually the desired 

maximum frequency is reach.  If the maximum frequency for some measurement is 1 

THz, this corresponds to a plate separation of 150 µm.  So the plate separation would 

need to change from 1.5 mm to 150 µm (1.35 mm) in approximately 3 seconds.  

Therefore the maximum required shaft-speed of the linear actuator is 450 µm/s.  

The Zaber model NA14C30 linear actuator was chosen for the tunable FPI 
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because it was inexpensive, exceeds both the step size and maximum speed requirements,

and is programmable (pictured on the right side of Fig. 32 is the programmable 

controller).  The minimum linear step size of this actuator is 0.381 µm and the maximum 

speed is 100 mm/s.  Using this linear actuator this first design iteration of the FPI was 

completed and the whole device was assembled.  Data was successfully taken with this 

fast-scanning, tunable-THz-FPI and is shown later in this chapter (page 77), the software 

written to control this FPI unit is also complete and included in this document in 

appendix B.  

 3.3.1.1.  Design advances 

This was the first FPI design, so there were no improvements over previous 

designs, however this design does represent the first ever fast-scanning, tunable-

frequency THz-FPI spectrum analyzer to successfully collect data.  As such it is a 

significant design and was presented to the THz community at an international 

conference [70].

 3.3.1.2.  Design shortcomings or problems

This FPI design was good proof of concept but had several problems.  None of the

problems prevent data from being collected, but they reduce the quality and accuracy of 

the collected power, which is critical when scanning for spectral signatures.  The most 

notable problem was the binding issues mentioned in the discussion of Fig. 33.  The 

mounting plate helped reduce binding, but it did not eliminate the problem.  When the 
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bushings would bind on the cage rods, the FPI mirror would get stuck, thus causing the 

linear actuator motor to slip, this problem then became a chain reaction.  Not only is the 

data ruined because several data points were taken at the same location, but the motor 

register is then offset.  So whatever used to be theoretical motor position “X” was then 

motor position “X-Y” where Y is completely unknowable variable.  This totally 

prevented the collecting of any more data until the motor was reset.  The binding problem

was also extremely sensitive to the vertical position of the linear actuator, The linear 

actuator actually had to be angled slightly because of the binding issue.  To help ease the 

linear actuator alignment it was mounted on an adjustable-height platform.  This vertical 

alignment sensitivity makes the FPI spectrum analyzer setup more challenging and time 

consuming than was intended.

Another problem was mirror parallelism, if the FPI bushings are binding due to 

some rotational forces, that means the FPI mirror is rotating slightly and therefore it 

cannot be parallel to the other mirror.  The rotational forces one of the mirrors “rock” and

slide down the cage rods at an angle.  In addition to this, the binding of the bushings on 

the cage rods caused the linear actuator to exert a lot of force on the fixed FPI mirror, 

thus making it “lean” backwards.  This also increased the angle between mirrors.   

Having some angle between the mirrors will cause inaccuracies in collected data, the 

distance on one side of the FPI cavity will be different from somewhere else in the cavity,

thus creating a larger and less accurate spectral bandpass feature.  To more effectively 

communicate this problem, it is illustrated in Fig. 34. 
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Much of the rocking problem described here happens because the bushings are 

slightly larger than the cage rods (6.35 vs. 6 mm).  An attempt was made with using 6.35 

mm diameter cage rods, but the binding problems were considerably worse and the 

tunable FPI mirror would not move easily.  Another problem would occur when the 

mirror movement direction changed.  Since the mirror rocked at different angles, 

depending on the direction of movement, there would be a transition period when the 

movement direction changed.  During this period the mirror separation doesn't change 

uniformly, rather the angle between the mirrors changes.  This again lead to multiple data 

points being collected at the same plate separation.  However because of adjustments 

made in the FPI controlling software (described starting on page 83) this problem was 

minimized.  
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Figure 34: The binding and rocking problems (greatly exaggerated for illustrative 
purposes) with this FPI design.  (a) The angles that are produced when the motor is 
driving the mirrors closer together.  (b)  The angles that are produced when the motor is 
pulling the mirrors farther apart.  
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There was also a smaller problem with this design that stems from how the wire 

meshes were mounted to the mechanical cage-rod plates.  The plates were laid flat on a 

table, the wire meshes were placed on top of them, and then glued into place using 

standard superglue.  The problem with this method is that the wire meshes are not 

guaranteed to be flat, Fabry-Perot mirrors must maintain flatness.  Curved or distorted 

meshes will cause undesired frequencies to transmit through the FPI and this reduces the 

Q-factor of the measurements.  After considerable use there was noticeable slack in the 

wire-mesh, so a better mounting solution was needed.  

Additional wire-mesh Fabry-Perot designs were made, but not actually used for 

data collection, so they are located in Appendix A.  A problem with all of these designs is 

that the wire-mesh mirror reflectivity shows a strong dependence on frequency.  This is 

not surprising, as the reflectivity is directly dependent on the ratio of wavelength vs. unit 

cell size.  So a scanned spectrum will not be truly accurate because the size of the 

bandpass feature will change with frequency, thus artificially changing the amount of 

power collected.  If the change in reflectivity vs. frequency were small, it may be 

compensated for in post-processing with a frequency sensitive correction factor.  

Transmission vs. power in figure 31 increases exponentially by -39.38*e(-0.001555*f) 

(obtained with curve fitting tool), where f is frequency in GHz and the answer is in dB 

units.  Dividing collected data by such a correction factor would compensate for the 

transmitted power difference vs. frequency.  

Nonetheless, the change in reflectivity vs. frequency is not small.  Figure 31 

shows a spectral range of ~500 GHz and the transmission (and hence reflectivity 
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R = 1-T) changes by 15 dB for each curve.  This change is so great that any single mesh 

will have trouble working over a 1 THz spectral range; using the exponential fit of the 

data in Fig. 31, if a mesh has appropriate reflectivity, say 95% at 1 THz, at 100 GHz the 

same mesh will be 99.9994% reflective.  With such a high reflectivity the fundamental 

bandpass feature would resemble a Dirac delta function, and measuring any signal would 

be nearly impossible (the power contained under a Dirac delta function is infinitely 

small).  Similarly, if the reflectivity is 95% at 100 GHz, it will be roughly 52% at 1 THz 

and spectral selectivity will be very poor (finesse = 4.75).  Therefore the wire-mesh 

mirror is only good for measurements over small spectral ranges, so a different mirror 

design is needed for truly broadband spectroscopy.  To address this problem a new mirror

concept will be presented in Chapter V that is based on the linear THz polarizers 

discussed in Chapter IV.

 3.3.2. THz spectral scan setup and results

Proof-of-concept testing for the fast-scanning, tunable-frequency, THz FPI 

spectrum analyzer was taken on a single-frequency, coherent source at 530 GHz (a 

frequency multiplier from Virginia Diodes Inc. [29]).  A narrow line-width, single 

frequency source was used for initial testing because it should demonstrate the frequency 

discrimination capability of the FPI.  From Fabry-Perot theory, the FPI mirror separation 

(d) corresponds to a specific resonant transmission frequency; for 530 GHz it should be 

283 µm.  Since the mirror reflectivity was measured separately, the theoretical Q-factor 

(analogous to finesse) of the FPI is also known.  The Q-factor is a metric commonly used 

to describe resonating cavities, it measures the ability of the cavity to resonate on a single
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frequency, while rejecting others.  It is calculated from the FWHM of the transmission 

resonance peak (Δf), and the center frequency of the peak (fc): Q = fc/Δf [74].  The FPI 

mesh-mirrors with 175-µm period are seen in Fig. 31 to be ~98% reflective at 530 GHz 

(finesse = 155), and thus the bandpass features should have a spectral line-width 

(FWHM) of ~6.84 GHz; corresponding to an optical Q-factor of 77.  So to summarize 

this experiment theoretically, the FPI data taken on the 530 GHz source should see the 

fundamental signal pulse at 283 µm plate separation with a Q-factor of 77, corresponding

to a finesse of ~155 and a change in frequency (∆ν) of 530 GHz.  Higher order peaks 

should occur with every additional 283 µm of separation.  Achieving these results would 

confirm that the FPI has very good frequency discrimination capabilities.
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Figure 35: Experimental setup for the THz FPI spectrum analyzer.  Here 
the 530 GHz source is visible, along with a lens used to focus signal into 
the FPI, the FPI, and a Schottky diode detector with excellent 530 GHz 
responsivity.
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The experimental setup used for this data collection is shown in figure 35.  The 

530 GHz FEM (frequency extension module) source is on the right side of the setup,  a 

4-inch focal length Teflon lens was used to collimate the signal into the FPI, and the 

signal was then collected with a zero-bias Schottky diode detector.  The Schottky diode 

was chosen for this measurement over a pyroelectric detector because it has much faster 

rise and fall times (ns vs. ms), and can therefore take data at a much faster rate.  To 

accommodate this, the FEM was electronically chopped at 30 kHz (vs. a maximum of 

10 Hz for a pyroelectric detector).  With the fast detection scheme, this experiment could 

demonstrate not only the fast-scanning capability of the FPI, but also the accuracy of 

power vs. frequency measurements.  Readings from the Schottky detector were measured

with a standard lock-in amplifier and its output data was collected with a LabJack model 

U9 data acquisition module (DAQ) at its maximum sampling frequency of 6 kHz [75].  

Both the linear actuator movement and the LabJack data collection were 

controlled within the MATLAB programming environment (the programming process is 

explained in detail in the next section).  The theoretical Q-factor of 77, for this FPI, 

corresponds to a spatial Nyquist resolution of ~3.65 µm/sample.  So for a 300 µm scan 

distance (this distance would guarantee measurement of a bandpass peak), the scan time 

would have to stay above 0.0137 seconds. However, to fully resolve the signature 

signature shape 3 samples are needed on the bandpass peak.  At 6 kHz sampling this 

resolution (2.43 µm/sample) corresponds to a movement rate of ~15 mm/s if the scan is 

completed by a single sweep in one direction.  The linear actuator was capable of meeting

this speed requirement.  Therefore, the theoretical minimum time required to resolve the 
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530 GHz peak through the FPI, with this criteria, is (300 µm)/(15 mm/s) = 0.02 seconds.  

To start data collection the FPI was scanned at a very slow rate and high 

resolution to ensure that all spectral features were accurately captured by the data, the 

result is shown in Fig. 36.  This scan time was 60 seconds and the spatial resolution was 

0.75 µm.  This first test proved to be a good illustration of the capabilities of the FPI 

system.  The high resolution used fully resolved the features of the collected signal.  The 

scan length (change in plate separation) was just under 500 µm and was taken over a 

plate separation that would collect two bandpass modes.  By collecting two bandpass 

modes the accuracy of the passed wavelength vs. plate separation, and the Q-factor of the

FPI could be determined.  

 The results in Fig. 36 show that the bandpass modes have exactly the correct 

separation for a 530 GHz signal, thus showing the accuracy of the FPI system, and this 
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Figure 36: High resolution data from the fast-scanning FPI at 530 GHz.  Shown here are 
two bandpass modes with the correct spacing between them.
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was a very encouraging result.  Unfortunately, the FWHM width of the bandpass modes 

was ~11.4 µm, this equates to a change in frequency of ~10.6 GHz.  With a center 

frequency of 530 GHz, the calculated Q-factor is 50.  This was a decent result, the 

frequency selectivity is quite narrow, but a Q-factor of 50 is only ~2/3 of the predicted 

value.   The reason for this discrepancy was attributed to deficiencies with the FPI design 

highlighted in a previous section (page 66).   The rock/lean problem described in that 

section makes the mirrors slightly off of parallel, and this would increase the number of 

frequencies that pass through the FPI, thus lowering the Q-factor.  A lack of mirror 

flatness could have a similar effect.  The noise and smaller peaks present in Fig. 36 were 

also attributed to these design problems.  Nevertheless, this result proved the accuracy of 

the FPI, while illustrating its frequency selectivity capability.  

The next experiment conducted was designed to test the speed with which an FPI 

scan could be made.  This test is important because the faster the system can scan, the 

more practical it becomes for real-world use.  The same experimental setup from the 

previous test was used, but the scan time was varied, and the mirrors scanned the same 

distance for every test, 500 µm, starting with 600 µm separation.  In this test the DAQ 

was constantly sampling at 6 kHz, so the resolution of each scan will become lower, as 

scan time decreases.  The scans started at 0.5 second scan time, and the time was 

decreased in subsequent scans until the FPI system could no longer detect the bandpass 

features reliably.  Fig. 37 shows the results from this experiment where, once again, the 

bandpass features were measured to have the correct spatial separation.  In these plots, 

the left most bandpass feature is the fundamental mode.  The FPI mirrors did not quite 
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come into contact because of the leaning issue, so very small separation distances (< 150 

µm) could not be measured, hence no transmission peak at the lowest separation (as 

predicted when plate separation = 0).  

With the scan rate at 6 kHz, the resolution of the first scan (0.5 s) was very high, 

500 µm/3000 samples = 0.167 µm/sample.  This evident in Fig. 37(a) where the line plot 

is noticeably more dense, and the collected bandpass features adhere closely to the airy 

function shape seen in Fig. 36.  As the scan time decreased the resolution decreased 

because the sampling rate was unchanged: 500 µm/600 samples = 0.833 µm/sample for 

the 0.1 second scan (Fig. 37(b)) and 500 µm/300 samples = 1.67 µm/sample for the 0.05 

second scan (Fig. 37(c)).  Despite the decrease, all three scans remained above the 

previous criteria of 2.43 µm/sample, however the peaks became slightly less resolved as 

scan time decreased (exemplified by the lower peak intensity of the second mode in Fig.

37(c)).  The airy function shape of the bandpass modes also started to become distorted 

(stretched and widened) as the resolution decreased.  This is indicative of the decreasing 

scan time having a negative effect on FPI accuracy.  0.05 seconds represented a 

hardware-limited fast scan time, because at this scan rate the linear actuator began to slip,
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Figure 37: FPI scans at 530 GHz with varying scan time.  All three scan times shown 
were capable of accurately measuring the FPI bandpass features.  
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thus yielding inconsistent results.  As in the slow scan (Fig. 36), some out-of-band noise 

is present in the results, this is expected and attributed to the same mirror alignment 

problems discussed earlier.  

Another important factor in these results is the rejection of out-of-band 

wavelengths.  In both Figs. 36 and 37 the bandpass features are ~10 dB larger than the 

noise floor.  The noise floor in this situation is not the true system physical noise, but 

rather the 530 GHz signal leaking through the FPI between bandpass features.  Having 

the out-of-band wavelengths 10 dB lower than the desired wavelengths is very desirable 

and confirms that most of the collected power is from the desired frequencies in the FPI.  

An experimental value for the mirror reflectivity can also be backed out from this data, 

by solving the transmission function in Fig. 28 for F.  Solving this, the reflectivity of the 

wire meshes is experimentally estimated at 60%, this is substantially different than the 

98% measured values for each individual mesh, and shows how the rock/lean problem in 

this FPI design degraded the frequency selectivity.  In other words, the mesh reflectivity 

isn't actually 60%, but idiosyncrasies in the FPI behavior makes it behave as though it is. 

 This behavior can be explained analytically by solving the Fabry-Perot airy 

function with error introduced (eq. 11).  In these equations T = transmission, F is a 

constant dictated by the mirror reflectivity, L is the round trip path length between 

mirrors, and λ is the incoming wavelength.  Nonparallel mirrors can be simply simulated 

analytically by summing many elemental Fabry-Perot airy functions with different cavity 

lengths [76].  For each discrete mirror separation (separation d), the FPI airy function can

be numerically integrated from separation d to d+x.  So if the mirrors are nonparallel by 
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50 µm (the FPI cavity is 50 µm wider on one side), this could be simulated by integrating

from d to d+50 µm.

T= 1

(1+Fsin2
(δ /2))

where δ=2π L /λ a nd L=2d+x (11)

Similarly, if the radiation incident on the FPI is not collimated, the cavity will 

effectively be a different length to radiation that is not incident at normal incidence.  This 

will change the wavelength that constructively interferes at certain points in the cavity.  

So to simulate a diverging (or converging) input signal the wavelength can be varied as T 

is calculated across the FPI mirrors.  

The results from this analysis are shown in Fig. 38, and behave as expected.  As 

the plates become nonparallel the transmission peaks begin to weaken, broaden, and there

is a shift in center frequency.  The weakening can be easily explained, because only a 
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Figure 38: The analytical transmission through a Fabry-Perot with various geometric 
imperfections added.  Here nonparallel FPI mirrors and an uncollimated input signal 
have been simulated.
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small portion of the FPI is at the correct separation, so at other locations on the FPI 

mirrors the transmission is lower than 1 for the input frequency.  This also causes the 

bandpass modes to broaden, as different sections of the FPI mirrors pass different center 

frequencies simultaneously.  The shift in center frequency is related to the reference point

of the plate separation.  In this example the plate separation on the x-axis was referenced 

to the short side of the FPI cavity.  So as the cavity length increases (due to being 

nonparallel) the bandpass feature will shift towards smaller wavelengths (because when 

the x-axis is centered on a small wavelength, longer wavelengths will also be 

transmitted).

The calculation for an uncollimated input is similar, as the input becomes more 

and more divergent (or convergent), the bandpass feature begins to broaden slightly 

more.  The is again expected because a beam entering the cavity at an angle will see a 

different cavity length due to simple trigonometry, thus changing the constructive 

interference frequency.  Error can also be introduced into the FPI by having the radiation 

incident at some angle other than normal, however this wasn't shown because it simply 

moves the location of the bandpass feature, no broadening occurs, analytically.  The pulse

broadening shown here with misalignment of the FPI mirrors, or an uncollimated input 

signal, is likely responsible for the lower-than-predicted resolution of the FPI.

These experimental results show that the FPI is a practical and high-speed device 

for taking spectral data.  Extrapolating these results out to the 1.5 mm mirror separation, 

necessary to cover the entire THz range, a scan could be completed in only 0.3 seconds.  

However, it is important to note that no Schottky diode detector has bandwidth large 

82

103



enough to take such a scan.  So in real world scenarios,  either a slower pyroelectric 

detector must be used, or several Schottky diode detectors.  Pyroelectric detectors are 

very slow, so they would lengthen THz spectral scans into hundreds of seconds, yet this 

scan time is still considerably quicker than current frequency-domain scanning systems 

and the setup time is minimal.  The FPI components are is simple as well, so it would 

cost should be low.  Using several Schottky diode detectors may be the best way to 

proceed with the FPI systems in the future, because multiple scans could be taken in a 

matter of 1 or 2 seconds (1 scan for each detector, mounted on a wheel or similar 

component).  Schottky diode detectors also have another advantage, which is virtually 

zero responsivity at out-of-band wavelengths; this would cut down on noise in the FPI 

scans, thus producing more accurate results.  

 3.3.2.1. Fabry-Perot software development

In order to operate the FPI spectrum analyzer, software had to be written to 

control the movement of the mirrors, and to control the data collection from a lock-in 

amplifier.  The MATLAB programming environment was used to complete this task 

because it is a high-level language, thus making programming an easy task relative to 

lower level languages such as C.  The first task in creating this software was 

programming the Zaber linear actuators so the FPI mirrors would move as desired.  After 

the mirror movement was completed, the LabJack DAQ was programmed into the same 

code to manage the data collection.  All of the code used for data collection is included in

Appendix B.
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The Zaber linear actuator uses a stepper motor that is controlled by 6-byte data 

packets transmitted through an RS-232 cable.  No pre-written MATLAB code existed 

from the manufacturer for these motors, so the code written was completely original and 

done specifically for this work.  The first task in programming the motor was figuring out

how to communicate individual commands to the controller, through the 6-byte data 

packets; an example packet is: [0 60 0 0 0 0].  This shows the 6 individual 8-bit numbers 

in the packet.  The first number selects the linear actuator (multiple actuators can be used 

with one controller).  If only one actuator is connected to the controller, then 0 can be 

used.  The second number is the command byte, in this example 60 is shown.  This 

command tells the controller to report the linear actuator position.  The next four numbers

are the data bytes, in little-endian notation.  For a read command like the one shown in 

the example, all zeros are used.  Other commands, like move to position “X,” are more 

complicated.  The input position for such a command must be converted first into the step

number of the motor, and then into little-endian format.   

[byte1 , byte2 ,byte3 , byte4]=entryToBits(576020)→[20, 202, 8, 0] (1)

[number ]=bitsToEntry (8,12,3, 4)→[67308552] (2)

So the first code that was written was two functions (Funcs. 1,2) to convert any 

regular number into little-endian notation, and the reverse.  As seen from the above 

equations, entryToBits() converts some number into the correct corresponding 4 bytes, 

and bitsToEntry() converts 4 bytes into the correct corresponding number.  The other 

important aspect of converting a user input into the correct notation was converting from 

a common unit (such as mm) to the number of linear actuator steps.  For example, when 
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moving the linear actuator to position 6 mm (for the smaller NA08B30), the 

corresponding entry number for entryToBits is 6 mm/.0000925 mm/step = 64865 steps.  

This is because the step size of the Zaber NA08B30 is 0.0000925 mm.  Giving a 

movement velocity also works in a very similar way, except instead of dividing the 

number by step size, the number is divided by minimum motor velocity.  For example, 

6 mm/s corresponds to 6718.9 steps/s because the minimum velocity of the NA08B30 is 

0.000893 mm/s.  These two functions were critically important and used in all of the 

forthcoming code, as they convert any user input into the correct format for the Zaber 

controller to read. 

With these two functions in hand the scanning software was written using a series 

of movement and movement speed commands.  For the slow scan done in Fig. 36 The 

function slowScan() was written and a function called oscillate5() was written for the 

faster scans.  These functions are identical in how the linear actuator movement is 

controlled, the only differences are relate to the DAQ programming.  The DAQ sampled 

at 6 kHz in oscillate5() and 3 Hz in slowScan().  An example call for one of these 

functions is [transmission] = oscillate5(1, 29.5, 0.5, 0.5).  The first number in this call is 

the motor selection (NA14C30 or NA08B30), the second number is the starting point.  

The linear actuator has 30 mm travel, so 29.5 mm puts the actuator 0.5 mm from the end 

of travel, where the stationary FPI mirror was located.  The third number is the scan time,

0.5 seconds here.  The fourth number is the distance to be scanned, 0.5 mm here.  This 

function call is what was used for Fig. 37(a).  

The movement functions begin by calculating the movement speed necessary to 
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cover the distance (0.5 mm in this example) in the allotted time (0.5 s in this example), 

and then turning the movement parameters into the 4-byte data packets.  Then the linear 

actuator is set to a high movement speed of 25 mm/s and moved to 2/3 of the initial 

starting position, the “pre-start” position (Fig. 39(a)).  From Design 1: Sliding bushing-

based Fabry-Perot plates with copper mesh mirrors, the early FPI designs had a rocking 

problem with the tunable mirror plate.  Moving short of the initial starting position first 

ensured that there was no change in the rock angle during the scan.  This process is better 

explained with the illustration in Fig. 39.  Obviously, the FPI mirrors would ideally be 

parallel, but having a constant lean is better than having it change during the scan, 

because the overall change in plate separation will be more accurate.  This part of the 

code was made for the first FPI design that had the rocking problem.  After this the 

actuator is moved to the starting position (Fig. 39(b)).
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When the tunable mirror was in the start position the movement speed is then 

changed to the correct speed, dictated by scan distance/scan time.  Then the linear 

actuator moves the tunable mirror the distance specified in the function input, toward the 

stationary plate; this is the final movement in a single FPI spectrum analyzer scan.  The 

DAQ data collection begins the moment (next line of code) the final FPI movement is 

called.  The data collection lasts the same amount of time as the scan time specified in the
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Figure 39: The angle of the tunable mirror can change 
depending on the movement direction.  Moving the mirror 
to a pre-start position ensures that when the scan starts, the
mirror angle does not change.  This way the mirror 
position information is more accurate.
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function input (so 0.5 s for the example above).  Assuming the acceleration and 

deceleration of the linear actuators is near instantaneous, this method of data collection 

gives an accurate sample vs. position, exemplified by the data in Figs. 36 and 37.  Unlike 

the Zaber linear actuators, the LabJack DAQ had MATLAB libraries available from the 

manufacturer.  So when either scanning function was called, the DAQ would be 

initialized near the beginning of the code, and then sampling could be easily initiated.  

An alternative method of scanning the FPI would involve having the linear 

actuator controller report its position for each sample.  This would be ideal, but this was 

far to slow to do a high-speed scan.  Sending a position query to the controller took ~0.25

seconds and was found to be unreliable (sometimes the position simply wasn't reported).  

So using the timing based approach was more practical with this hardware combination.  

A particular point was made when programming for the FPI to make all code 

function based.  Because of this the scanning functions could easily be set inside of 

another script or function and called many times.  As an illustration of this, a simple 

graphical-user-interface (GUI) was made to control the Zaber linear actuator in 

MATLAB.  A screenshot of this GUI is shown in Fig. 40, and the code for this GUI is 

now featured on the Zaber Technologies Inc. website [77].  
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3.4. A discussion of the Fabry-Perot, improvements, and future work

The FPI represents an important new approach to THz spectrum analysis.  

Currently there are three primary methods of measuring the THz spectrum of a PC 

switch: (1) time-domain spectroscopy (TDS), (2) Fourier transform spectroscopy, and (3) 

spot frequency measurements with calibrated detectors (such as was done in Chapter II).  

All three methods have advantages and disadvantages when compared to each other.  

TDS systems simply create a cross-correlation between an ultrafast laser pulse and a THz
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Figure 40: A simple GUI created to control the Zaber linear actuators.  Inputs are 
converted into data packets using the function-based code.  The “Find current position” 
button was pushed in this screenshot and the position of 44293 is displayed in the 
command window.  This position is in motor steps and corresponds to 16.87 mm.
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pulse, this works exactly like cross-correlation in signal processing [78].  The result from 

this process is an accurate recreation of the THz pulse in the time domain (fig. 41(a)).  

Spectral information is then found by Fourier transformation using Wiener's theorem 

(fig. 41(b)) [79].  TDS systems do a good job of obtaining accurate spectral information 

from a THz source but they are extremely sensitive instruments that can lack practicality 

for several reasons.  First, TDS systems require extensive setup time.  After inserting a 

PC switch into such a system a very careful alignment must be performed, this can take 

hours to complete.  Second, TDS systems are very expensive and a system in which the 

source can be easily “swapped” out must be custom built on an optical table.  This 

requires a trained engineer or physicist, an ultrafast laser, and many expensive optical 

components.  The third and final reason TDS systems can be inadequate for some 

applications relates to THz reflective spectroscopy; the THz pulse path length in a TDS 

system must be very precise.  In a real world scenario the THz path length to the target 

will be constantly changing, jeopardizing the alignment of the TDS system for every 

sample.
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Figure 41: Example TDS results from a Menlo Systems commercial system.  (a) a 
measured THz pulse.  (b) The THz spectrum calculated from the time-domain pulse [79].
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Fourier transform spectroscopy (FTIR) is a historical, common technique for THz

characterization and is capable of measuring from THz spectrum through visible 

spectrum.  The problem with this technique is that the dynamic range is poor below ~3 

THz, several orders of magnitude worse than TDS systems.  This is largely due to the 

thermal detectors used in these systems, and this also decreases the dynamic range of the 

system even further when one or more components in the system are hot [80].  Lower 

dynamic range also virtually eliminates this technique from reflective spectroscopy 

applications, because the required dynamic range will scale non-linearly with stand-off 

distance (radar-range equation, signal power drops by 1/r4).  Last, the resolution from 

Fourier transform spectroscopy is poor compared to other spectroscopy techniques (>3 

GHz) [80].  

Spectral reconstruction using spot frequency measurements is much simpler than 

TDS or FTIR, but also more limited.  This method is good for getting bandwidth 
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Figure 42: Bandwidth calculations for 1% Er bearing ErAs:GaAs PC switches using 
Discrete frequency measurements for spectral estimation.  (a) is the measurements taken 
during the intial discovery of extrinsic PC in ErAs:GaAs and (b) is a measurement taken 
for [63].  The difference between these two measurements show that this method of 
spectral analysis lacks in precision compared to TDS systems.
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estimates from a PC switch because it doesn't require precise optical table setups like a 

TDS system, and it is inexpensive because the only components needed are common 

optics and direct, band-limited detectors.  Each detector is placed in the THz path 

sequentially and at approximately equal distance from the source and the output signal is 

recorded.  However this method is not capable of doing any type of spectroscopy because

discrete frequency spectral measurements are extremely low resolution.  For example, in 

Chapter II only three data points could be taken (because there was only three band-

limited detectors).  This is enough to estimate the bandwidth of the PC switch, but no 

other spectral information can be garnered (such as spectral signatures).  Another 

downside is that experimental setup is tedious, as every detector must be sequentially 

placed in the same location.  The precision of this method is questionable as well, as 

mentioned earlier and shown in Fig. 42.  Experimental inconsistency9 can make 

measurements on identical devices different by 50% or more, although the change in 

laser power between measurements could also be partially responsible [5], [63]. 

To conclude this section several possible improvements for the FPI are be 

suggested as future work.  The first of which related to detectors.  The best FPI 

performance should come from use with band-limited, waveguide-mounted, zero-bias 

Schottky diode detectors, rather than more broadband detectors such as bolometers and 

pyroelectrics.  This statement is justified by two facts:  The fast rise and fall times 

available in zero-bias Schottky diode detectors makes fast scans (<1 s) possible, and the 

9 Experimental error for spot frequency measurements could be introduced through poor laser alignment 
on the PC switch, detector alignment inconsistencies, and changes in laser performance (shortly after 
the data in Fig. 42(b) was taken the laser failed, suggesting it may have not been performing 
optimally).  
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sharp wave-guide low-frequency cutoff of these detectors will help reject unwanted 

frequencies from being measured.  In chapter V (page 136) it will be shown that higher 

frequency modes should have little effect on measured power, but very low frequencies 

were not discussed in great detail.  For a small mirror separation, say 100 µm, very low 

frequencies will not be rejected by destructive interference, but only by the mirror 

reflectivity.  So without some kind of high-pass filter, high frequency measurements 

could be corrupted by low-frequency leak-through.  The sharp low-frequency cutoff 

presented by waveguides inherently creates this shortpass filter.  So a detector “wheel” of

3 or 4 Schottky diode detectors covering the desired spectrum would allow scans to be 

accomplished in a matter of seconds, with greater accuracy.  

Another improvement could possibly be made using cleverly designed optics.  

Shown in [81], [82], and [83], it is possible to make diffractive THz optics that only focus

wavelengths chosen by the lens designer onto the focal point.  An example of this is 

shown in Fig 43(a), this lens is called a “superzone” lens because each element (or zone) 

is designed for an individual wavelength [81].  So it should be possible to fabricate THz 

lenses (out of materials like Teflon or polyethylene) that focus only desired frequencies 

into the detector, after the signal passes through the FPI.  For example, if the intention 

was to detect the THz signature of Lactose monohydrate at 532 GHz, a lens could be 

made specifically to focus wavelengths from 500 to 550 GHz.  
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Fig. 43(b) shows the normalized modulation transfer function (MTF), a common 

optical metric for spatial resolution, of wavelengths propagated through this lens design 

(the area under the MTF curve was summed for each wavelength). Each plot on Fig.

43(b) is for a different lens element in Fig. 43(a).  It is apparent that this lens was 

designed to focus 400 and 600 GHz at the design focal length.  So if the detector was 

placed at the focal point of the lens, it would detect these frequencies more efficiently.  

The other frequencies in the graph are focused, of course, but at different focal points.  
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Figure 43: An example of a "superzone" diffractive lens. The elements of 
this lens are designed to focus only 400 and 600 GHz (750 µm and 500 
µm) onto the focal point.  Other frequencies will focus elsewhere. (a) is a 
cross-sectional view of the lens profile and (b) is the MTF of each lens 
element vs. wavelength.
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The design possibilities of this lens type are many, so they could be designed to enhance 

the detection of any portion of the THz band.  For this work an example of a THz 

superzone diffractive lens was fabricated and presented at an international conference 

[83]  and is shown in Fig 44. 

The final suggested

improvement for the FPI spectrum

analyzer is improving the mirrors.

Wire-mesh mirrors worked will for

this proof-of-concept design, but the

change in reflectivity with frequency

proved problematic.  The useful

frequency band of the FPI is limited

by this factor.  After this FPI concept

was presented to the THz community in 2011, another research group used a small 

metallic coating to achieve a mirror with much smaller reflectivity change, in 2013 [84].  

This was a step in the right right direction, but in chapter V another, more flexible 

approach is presented, using THz polarizers for the FPI mirrors.  Polarizing FPI mirrors 

are promising because their reflectivity can be easily tuned for maximum resolution, or 

maximum power.  But first, in Chapter IV, new THz polarizers will be discussed that 

were eventually used for the FPI mirrors because these polarizers were exciting in their 

own right, and led to several publications.  
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Figure 44: An example of a simple superzone 
diffractive THz lens designed to focus 200, 400, 
600, and 800 GHz at 2 inches.  
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 4.  Structured-Surface-plasmon enhanced THz polarizers and devices

Chapter III explained and demonstrated an exciting new THz spectrum analyzer 

based on a tunable, fast-scanning Fabry-Perot interferometer (FPI) [70].  This is a 

significant advancement for reducing the cost of accurately measuring THz sources like 

those presented in Chapter II, and for the possible development of reflective spectroscopy

systems.  In the tests from Chapter III, the THz FPI showed a good ability to discriminate

and accurately measure different frequencies.  The FPI is also easy to setup, align, and 

can take scans very quickly (<1 s).  However there is one notable deficiency: the FPI 

mirrors used are relatively narrow-band so the entire THz spectrum can not be scanned.  

So at the end of Chapter III FPI mirrors based on THz polarizers were presented as a 

concept.  Polarizers should make excellent mirrors for the FPI; they are far less frequency

dependent than wire meshes, and can be adjusted to maximize frequency selectivity or 

power.  This chapter focuses on the work done to develop better THz polarizers that 

eventually could be used for the FPI spectrum analyzer, and this fits the research plan 

shown in previous chapters, and below (Fig. 45).  

The dashed box in the research plan provides a graphical illustration of what this 

chapter will cover.  First the current state-of-the-art in THz polarizers will be discussed, 

with some common metrics, and common problems.  This will be followed by a 

discussion of surface-plasmon-like behavior that was seen in polarizer simulations, as this

work searched for the best polarizer design.  Then this behavior will be rigorously studied
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experimentally with different wire-grid polarizer designs.  This includes changes to 

several physical characteristics of the polarizers, including the percentage of metal in the 

wire-grid unit cell (fill-factor (FF)), the period of the unit cell, and replacing a single 

polarizer wire with several smaller wires.  Finally, this chapter will end with a summary 

of the new surface-plasmon-like effects in polarizers, and how they could be used to 

benefit other devices in addition to polarizers.
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Figure 45: Research outline for this work.  This chapter will focus on the new plasmon-
like effects discovered during this research.  This effect improves the performance of the 
THz polarizer dramatically.  Eventually, in Chapter V the polarizers will be used to 
improve the THz FPI from Chapter III.
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4.1. Current state of the art in THz polarizers: Free-standing wire-grids and 

structured surface plasmons

To find the best polarizers

for the THz FPI spectrum analyzer,

current commercially available

polarizer designs were investigated. 

These commercial THz linear

polarizers are usually composed of

metal wires that have been stretched

across some open aperture to create

a free-standing wire-grid (Fig. 46) 

[85]–[87].  Their performance is

adequate for many applications with

up to 39 dB of attenuation in the

parallel-polarization at ~500 GHz, and the transmission through the polarizers is nearly 

100% in S-polarization.  However, there are many different polarizer designs available 

and the advantages of each is unclear.  The size and period of the polarizer wires is varied

across many different designs.  Sometimes polarizers with smaller periods perform better 

than others, and sometimes not.  The same applies for polarizer wire size.  For example, 

the polarizer with the most parallel-polarization rejection across the THz band in [85] has

10 µm diameter wires, but some other 10 µm wire designs are inferior to designs with 20 

µm diameter wires.  So choosing the best polarizer is not straightforward.  
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Figure 46: A typical free-standing wire-grid THz 
polarizer [85].  These have decent performance but
are very expensive and fragile.  
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Furthermore, there are more practical problems with the standard free-standing 

wire-grid polarizers.  First, they are not very capable of blocking signal as frequency 

increases. At 1 THz the best free standing wire-grid has an extinction ratio of only ~33 

dB, and as frequency rises this number continues to degrade [85].  The free-standing 

wire-grids are also quite fragile, as the wires are usually only tens of microns thick and 

wide, and have no substrate to support them.  So rough handling by the user can destroy 

the polarizer.  Another problem is that they are quite difficult to fabricate; the wires must 

run parallel to each other, maintain perfect planarity, and are separated by only tens of 

microns.  This makes the fabrication, and consequently purchasing price quite high.   

Because of this, fabricating substrate-based wire-grid polarizers in house was a 

more cost-effective option.  A modest cleanroom was available to fabricate simple 

devices using photolithographic techniques developed for the microelectronics industry.  

Fabricated polarizers would be much less expensive because the materials that comprise 

the polarizers are inexpensive.  For example, the single-crystal-quartz substrate materials 

used in this work cost less than $20 for 2-inch diameter.  The cost of the metal wires that 

comprise the polarizer was also negligible because cheap metals could be used, such as 

aluminum.  Additionally, the amount of metal used per polarizer is very small (a few 

grams).  With this decision, the next step was to decide on the polarizer dimensions.  

A 2-inch diameter would be adequate for the polarizer; this diameter is small 

enough to handle easily, but large enough to easily encompass the beam-waist of an 

incoming THz signal (assuming a spot size of ~1 cm, typical for many systems).  The 

diameter was a pragmatic decision, but choosing the other critical polarizer dimension 
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(period and wire-width) was not as obvious.  Polarizers are designed to discriminate a 

single linear polarization, so it was desirable to achieve maximum rejection of signal in 

the parallel-polarization, but transmit most in perpendicular-polarization.  

To determine which period and wire-width was desirable, a study was performed 

on the literature of linear THz polarizers and optical gratings, and an interesting 

phenomenon was found.  The literature shows that significant signal could pass through 

periodic arrays (such as a polarizer) with features that were considerably smaller than the 

wavelength of the incoming signal (hole sizes as little as 1% of the wavelength).  

Examples of this are abundant in the visible and near-IR regions, where surface plasmon 

polaritons have been utilized to create extraordinary optical transmission (EOT) through 

sub-wavelength features [88].  EOT is simply when more radiation is transmitting 

through an aperture than geometric optics would predict.  This work was also extended to

the THz region on substrate based polarizers.  Some of the THz devices that exhibited 

EOT include sub-wavelength triangular grating structures (with a period of a few 

microns) [89], [90], sub-wavelength binary optics to collimate THz laser beams [91], and 

low period (a few microns) THz polarizers [92].  This was exciting because while 

perpendicular-polarized signal still passed through the polarizer with little loss, P-

polarized signal was even more strongly rejected than normal.  

This EOT phenomenon was attributed to “spoof” or “structured-surface 

plasmons” (SSP).  The SSP is very similar to the traditional surface-plasmon polariton in 

its behavior, but not strictly the same physical effect.  Surface-plasmon polaritons are 

electromagnetic surface waves that can form at a grated dielectric-to-metal interface if 
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high frequency light (close to the metal plasma frequency) wave is incident perpendicular

to the interface.  The surface wave is confined primarily to the interface.  But if the period

of the grated surface matches the wave vector of the surface plasmon, the surface wave 

can be coupled back into free space on the opposite side [88].  This means that surface-

plasmon polaritons can enable EOT in small metallic gratings or arrays.  However as the 

frequency of the incoming light decreases, the propagation constant of the plasmon along 

the interface decreases, and at frequencies well below the near-IR, surface-plasmon-

polaritons are not well confined (they simply disperse) [93].  So at THz frequencies 

(much lower than near-IR), surface-plasmon polaritons cannot be generated efficiently.  

This is where the SSP terminology comes from.  THz radiation can experience 

strong EOT effects when propagated through extreme sub-wavelength arrays, much like 

visible and near-IR light does because of surface-plasmons.  Yet, surface-plasmon-

polaritons cannot physically be responsible.  So the SSP name was invented to label a 

phenomenon that displays behavior similar to that seen with true surface-plasmons.  
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To continue this research it was decided to try to utilize SSP enhanced polarizers 

for the FPI mirrors, a reasonable possibility if the polarizers are custom fabricated.  SSPs 

are strongly reliant on device geometry: like plasmons, a metallic grid of sub-wavelength 

periodic apertures in a metal sheet will support SSPs.  And sub-wavelength polarizer 

designs have such a geometry. The physical basis behind the SSP effect is that incoming 

S-polarized waves create oscillating surface charges on the polarizer wires, which 

concentrate charge at the gap edges (the sub-wavelength apertures in this case), creating 

oscillating dipoles across the gaps. When the gaps are made very narrow, the 

electromagnetic energy is concentrated inside them and radiated efficiently out the other 

side, thus creating EOT.  This is shown schematically in Fig. 47.
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Figure 47: An example of a sub-wavelength period THz polarizer that utilizes SSP 
enhancements.  The oscillating dipoles created on each metal strip enable EOT.
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4.2. Applying SSPs to the simple substrate based polarizer 

The earlier results in the literature suggested that maximizing EOT through sub-

wavelength gratings also increases the extinction ratio in transmission [eT = S-polarized 

transmission (dB) – P-polarized transmission (dB), where S = perpendicular and P = 

parallel] because the EOT maintains high S-polarization transmission, while reducing the 

P-transmission because of the smaller polarizer features.  So to find a promising polarizer

geometry that could be fabricated (the fabrication equipment was limited to 2 µm 

resolution), full-wave finite-element simulations were performed using High Frequency 

Structure Simulator (HFSS) [94].  The goal of the simulations was to find the polarizer 

geometry that maximized eT, while still keeping S-transmission at an acceptable level (> 

-3 dB would be preferred).  

The first parameter studied in the simulations was the polarizer period (L in Fig.

48(a)), especially its effect on eT.  After this the next parameter investigated was the wire 

or strip width, without changing period.  This means that the percentage of metal in the 

wire-grid unit cell would increase as the strip width increases, a quantity referred to as 

fill-factor (FF).  FF is given by W/L in Fig. 48(a), so if a polarizer has a 50 µm wide 

metal strip and a 100 µm period, the FF is 50%.  In the previous literature the FF of a 

polarizer had not been rigorously studied with simulations and experiments.  Naturally, 

one would expect the S-transmission to decrease according to geometric optics as FF is 

increased; however, simulations would better tell how FF effects S- and P- transmission 

together, and therefore the effect on eT.
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The HFSS simulations were carried out with a single unit cell of the polarizer, as 

in Fig. 48, and periodic boundary conditions were used to emulate the effect of the unit 

cell repeating infinitely in both directions.  THz signal was propagated perpendicular to 

the substrate using Floquet ports, which mimics an incoming plane wave with a single 

linear polarization.  To match the frequency range that could be measured experimentally,

the simulations were conducted from 200 GHz to 1 THz.  Next the polarizer substrate 

was picked, with an inexpensive substrate material being very desirable.  So initially 

polycarbonate was chosen for the substrate, which is a plastic that exhibits excellent 

transparency at millimeter wave (MMW) and low THz frequencies (< 500 GHz).  

However, as frequency increases the absorptive losses in a typical 1.5 mm thick 

polycarbonate substrate increases to well above 3 dB [94], so eventually the 

polycarbonate substrate was replaced with Z-cut single-crystal quartz.  Z-cut-quartz 

substrates cost significantly more than polycarbonate but exhibit virtually no absorption 
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Figure 48: S- and P- polarization definitions.  This figure is shown again here because it 
helps define the polarizer period (L) and strip width (w).  This is important for 
understanding the polarizer naming convention used here.
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across the entire experimental spectrum in this work (a claim that will be later 

confirmed).  Quartz was also a good material because it could be obtained with extremely

flat, optically polished surfaces, and is chemically inert.  The thickness of the quartz 

substrate was chosen to be 0.5 mm because that provides physical durability during 

fabrication and characterization.

The metal chosen to comprise the polarizer strips was aluminum because it is 

inexpensive and adheres well to quartz, an important factor for the following fabrication.  

Aluminum also exhibits good electrical conductivity, although not as high as gold or 

silver, but the price is far lower.  The thickness of the metal was set at 2000 Å, an easy 

thickness to obtain by thermal evaporation.  To ensure the aluminum and quartz 

absorptive and reflective losses were modeled accurately at THz frequencies, look-up 

tables were used to enter the correct complex dielectric function [95]. For aluminum the 

metal dielectric function is based on the Drudian model with a momentum relaxation 

time of τ = 10-14 s.  Early simulations based on polycarbonate substrates used 

experimental spectrometer data to find the correct dielectric function.  

For all simulations and experiments conducted the polarizers were given a 

compact naming convention that was based on the width of the metal strip (W) and the 

polarizer period (L) as defined in Fig. 48(a).  For example, a 50% FF polarizer with W = 

50 µm and L = 100 µm would be labeled 50x100 µm, and the FF is simply W/L.  The 

first simulations, to study the effect of changing the polarizer period on extinction ratio, 

were done with 10x20 µm, 20x40 µm, 40x80 µm, and 80x160 µm polarizers.  Three 

different frequency points were simulated to show how the extinction ratio changes: 500, 
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600, and 700 GHz.  At these frequencies all four polarizer designs have sub-wavelength 

period, and the simulations could be tested experimentally.  The results from these 

simulations are shown graphically in Fig. 49.

The results clearly agree with

previous work in that decreasing the

sub-wavelength period improves the

performance of THz wire-grid grid

polarizers.  The observed increase in

eT (Fig. 49(c)) is attributed primarily

to the reduction in P-transmission

with decreasing period (Fig. 49(b)),

but there was also a marginal

increase in S-transmission (Fig.

49(a)).  These initial simulations

were done with 1.5 mm thick

polycarbonate substrates, and this

explains the rapid increase in loss in

S-transmission with frequency.  The

wire grids themselves are reflecting

very little radiation in S-

transmission, which is why the data in Fig. 49(a) converge as the period decreases.  This 

will be substantiated by the quartz simulations done later.  The P-transmission decreases 
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Figure 49: The polarizer period study at a constant 
FF on a polycarbonate substrate.  This figure 
agreed with results previously found by others that 
decreasing the period to sub-wavelength sizes 
improves performance [92].
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steadily with period, as expected.  In P-polarization there are no SSP effects present 

because there is not any significant dipole formation across the polarizer gaps, so as the 

gap size decreases the reflection must increase, thereby lowering transmission.

After confirming that

reducing the polarizer period to deep

sub-wavelength levels improves

polarizer performance, the second set

of simulations aimed at finding the

optimum FF at a constant period.

These simulations were performed

on the same periods shown in Fig.

49, but in Fig. 50 the results for only

40 µm period are shown because this

was the value eventually selected for

fabrication.  The fill-factors chosen

for the study ranged from 30% to

90% in 10% increments.  

The results from this study

were very exciting; at all of the

tested FF levels the S-transmission

(Fig. 50(a)) was quite high, with the

low-FF data again converging on the polycarbonate absorptive limit.  This means that the 
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Figure 50: The transmission vs. FF simulation 
results on a polycarbonate substrate.  (a) While S-
transmission decreases with FF, the change is 
surprisingly small.  (b) P-transmission sees a large,
non-linear drop in transmission with FF.  (c) The P-
transmission dominates the FF results, with the 
highest fill-factors having the greatest extinction 
ratio
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highest-FF wire-grid of 90% only exhibited ~1 dB of insertion loss (neglecting the 

polycarbonate absorptive losses).  And it suggests that the SSP enhancement present in 

each grating must be increasing as the FF increases, likely because the EOT is also 

strengthening.  This increasing SSP effect is enabled by a non-linearly (concave up) 

increasing Poynting vector magnitude in the polarizer gaps.  This is hardly surprising 

considering that while the FF tripled from 30% to 90% the S-transmission remained 

relatively unchanged.  It should also be noted here that the geometric optical limit for 

transmission at 90% FF is -10 dB, neglecting any absorptive losses.  The S-transmission 

of the polarizers simulated here were all above that level even with the absorptive losses.

The results become even more exciting when the P-polarization results are 

analyzed (Fig. 50(b)).  As the FF increases, the P-transmission decreases super-linearly.  

This makes sense given that the percent change in gap size increases super-linearly as FF 

increases.  For example, from 30% to 40% FF the gap size decreases 15% and from 80% 

to 90% FF the gap decreases 50%.  So this means that a high FF polarizer should be able 

to substantially outperform a lower FF polarizer (like those commonly seen 

commercially) in P-polarization.  The large super-linear decrease in P-transmission 

dominates the extinction ratio plot (Fig. 50(c)), where the 90% FF polarizer has by far the

highest eT.  The FF dependence on polycarbonate polarizers was published in a peer-

reviewed journal [94].
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From this point on, Z-cut

single-crystal quartz substrates were

adopted instead of polycarbonate

because the quartz is relatively

lossless at THz frequencies, allowing

the polarizers to perform much better

in general.  With both the period and

FF studies complete (on

polycarbonate), the next step was to

combine the results of each by

testing how polarizer performance

changes when the period is

decreased on a high FF device.  So to

continue the simulations, two 80%

FF polarizers were chosen, 80x100 

µm and 32x40 µm.  And since these

polarizers were later fabricated, the

simulations were swept from 200 GHZ to 1 THz with a resolution of 1 GHz (the 

experimental range).  Using the frequency sweep also provided more insight into the 

detailed behavior of the polarizers, including etalon modes that were present because of 

the standing waves in the substrate.  According to etalon theory, the standing-wave period

can be calculated by Δf = c/2nt, where n = index of refraction, t = etalon thickness (0.5 
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Figure 51: The simulated transmission through 
80% FF polarizers with 100 µm and 40 µm periods
on a quartz substrate.  (a) S-transmission. (b) P-
transmission. (c) extinction ratio.  It is clear from 
these plots that the 40 µm period polarizer is 
superior in both S-transmission and P-
transmission.
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mm), and c = speed of light). This predicts a standing-wave period of  Δf ≈ 142 GHz for t

= 0.5 mm and n = 2.2 [95], and the simulated results are shown in Fig. 51.  

As predicted, the standing wave period is ~142 GHz.  For each polarizer the 

standing waves create slightly different peak frequencies, because of reflective phase 

differences created by the metal strips on the surface of the polarizer.  In any case, the 

most important information shown in Fig. 51 Is that the 32x40 µm is vastly superior to 

the 80x100 µm period polarizer.  The results are similar to the previous results on 

polycarbonate substrates in that the smaller period polarizer has higher S-transmission 

(Fig. 51(a)) and much lower P-transmission (Fig. 51(b)).  

Other useful information can be seen in this simulation because of the quartz 

substrate.  The S-transmission of the 32x40 µm polarizer is very near 100% for the entire 

simulated spectrum at constructive interference peaks, which helps illustrate the 

transparency of this substrate.  Because of the high S-transmission, the 32x40 µm 

polarizer meets the EOT criterion set forth earlier, where most of the signal can pass 

through the polarizer.  Another point can be made here to illustrate the EOT effects 

created by the SSPs.  The optical geometric limit for transmission through an 80% FF 

unit cell is -7 dB, but in this simulation the transmission is considerably higher, especially

with the 32x40 µm polarizer which has a minimum transmission of -4 dB at 900 GHz.  
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After finding that increasing

FF and reducing period at the same

time indeed creates a better

polarizer, more simulations were

done to find the optimal FF ratio.

Earlier simulations only went to

90% FF, but the S-transmission was

still high at this point.  So increasing

the FF further would finally show

what period and FF would maximize

extinction ratio while still having

acceptable S-transmission.  For this

final simulation the period was set at

40 µm and the FF was set to 80%,

95%, 98.75%, and 99.75%.  The

results are plotted in Fig. 52 and are

quite exciting.  The transmission in

S-polarization (Fig. 52(a)) was not

significantly affected until the FF was near 99%.  In fact, at two constructive interference 

locations more than half of the signal is transmitted even at 98.75% FF.  As expected 

from previous simulations on the polycarbonate substrates, the P-transmission (Fig.

52(b)) decreased monotonically.  
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Figure 52: Simulated transmission vs. FF for 40 µm
polarizers on quartz substrates.  (a) S-transmission.
(b) P-transmission. (c) extinction ratio.  The results 
here are surprising, even the 98.75% FF polarizer 
transmitts more than half of the incident signal at 
certain frequencies. 
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The results for S-polarization are far more interesting than P-polarization because 

there is a very large SSP-enabled EOT effect present. Geometric optics predicts S-

transmission magnitude for all four FFs (-7 dB for 80% FF, -13 dB for 95% FF, -19 dB 

for 98.75% FF, and -26 dB for 99.75% FF), yet the lowest simulated values are -4 dB, -7 

dB, -13 dB, and -18 dB respectively (all coming near 1 THz). A consistent pattern 

observed in the S-transmission simulations is that the transmission is a strong function of 

frequency too, exemplified by the 99.75% FF polarizer having an astounding -2 dB 

transmission at 100 GHz. This is consistent with the SSP-enabled EOT being strongly 

dependent on the wavelength-to-period ratio (λ/L). When this ratio becomes smaller, 

EOT weakens and geometrical optics has a larger impact on transmission. The observed 

dependence of S-transmission on λ/L explains why reducing polarizer period improves 

THz performance. 

This result is supported by the work published on the polycarbonate polarizer [94]

where a decrease in transmission was also seen as frequency increased.  But at that time it

was unclear how much of the decrease was caused by the geometric effect versus 

absorptive losses from the polycarbonate substrates.  However, since quartz has 

effectively no absorptive losses across the entire simulated spectrum, the decrease seen 

here must be the geometric effect.  The geometric effect is also observed in Fig. 51 and 

explains why the S-transmission of the 80x100 µm polarizer decreases more quickly.  

To confirm the SSP effects seen in the above simulations, three polarizer designs 

were then fabricated and tested: 32x40 µm, 38x40 µm, and 80x100 µm.  Together these 

polarizers were able to experimentally test both the effect of FF (32x40 vs 38x40 µm) 
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and period (32x40 vs. 80x100 µm) on polarizer performance.  Designs above 95% FF 

were not pursued experimentally because, although they exhibited higher simulated eT, 

they were subject to fabrication errors caused by the limited spatial resolution of the 

lithography (2 µm).  

 4.2.1. High fill-factor experiments 

The fabrication was done using standard planar-processing techniques, typically 

used for silicon fabrication. With the availability of a modest clean room and thin-film 

metal-deposition equipment, the processing is cost-effective and fast. There are three 

steps in the process, after the substrate has been chosen: 1) metal deposition, 2) patterning

(photo-lithography), and 3) wet etching. 

As mentioned earlier, the polarizer substrates were 0.5 mm thick z-cut single 

crystal quartz with optically polished, flat surfaces.  Besides exhibiting excellent 

transparency, quartz also provides good adhesion with evaporated metals, such as 

aluminum.  The diameter of the substrates (and hence the polarizers) was 2 inches.  This 

diameter was chosen because it was compatible with the available fabrication equipment, 

and can also be easily packaged into 2-inch rotation stages for testing.  Furthermore, 2-

inch diameter was appropriate for use with the FPI spectrum analyzer.  Without these 

limiting factors the polarizers could be made to be any size, as long as the substrates are 

available and the diameter is considerably larger than the incoming wavelengths.  

The aluminum was deposited on the quartz substrates using a thermal evaporator 

(Denton model DV-502B).  Besides adhering to the quartz well, aluminum is a good 
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metal for fabrication because it has a low melting point and is relatively insensitive to 

evaporator conditions [96].  The target thickness for the evaporated films was 2000 Å.  

After evaporation, the polarizers were patterned onto the metal with a 2 µm thick film of 

positive photoresist (AZ-1518) using a contact mask aligner (Karl Suss MJB-3).  After 

patterning the photoresist was removed with developer and the aluminum was etched 

with a standard phosphoric-based acid solution [97]. The remaining photoresist was then 

removed with acetone, leaving a finished and ready-to-use polarizer.  

The polarizers were then packed into the 2-inch rotation stages.  Because of the 

0.5 mm quartz substrates the polarizers were physically robust, thus making handling and

packaging very easy.  A finished and packaged polarizer is shown in Fig. 53(a) and a 

micro-photo of the same (38x40 µm) polarizer is shown in Fig. 53(b).  

Experiments consisted of measuring the THz transmission with a commercial 

frequency-domain spectrometer (Emcore model PB7100).  The spectrometer frequency 
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Figure 53: A finished and packaged 38x40 µm polarizer on a quartz substrate. (a) The 
polarizer in it's rotation stage, ready for testing.  (b) A magnified photo of the polarizer.
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range is 200 GHz to 1.8 THz, but because of dynamic range limitations, the polarizers 

were only tested from 200 GHz to 1.0 THz (P-transmission data after this point fell into 

the system noise floor).  Even at 1 THz, the dynamic range of the spectrometer is at best 

45 dB, and from the simulations the P-transmission can be vastly lower than this.  

However the dynamic range is higher at lower frequencies, at 200 GHz being ~70 dB.  

Another factor that limits dynamic range is the experimental setup, the detector and 

source in this system are circularly polarized, so each must have a polarizer in front to 

create a linearly polarized signal.  To achieve the very high degree of linear polarization 

needed to test these polarizers (>70 dB at 200 GHz), two additional high-FF (30x40 µm) 

polarizers were used that provided a combined extinction ratio of ~80 dB [98].  These 

two polarizers were co-aligned to create maximum transmission so they could act as an 

analyzer.  A block diagram of this

experimental setup is shown in

Fig. 54.

The first step in this

experiment was to take a background

scan with both analyzers in place but

not polarizer under test.  Next a bare

quartz substrate was tested to

confirm its transparency.  This test

confirmed that the absorption

through the 0.5 mm quartz substrate
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Figure 54: Block diagram of the experimental setup
for polarizer characterization.  Two high-extinction 
ratio polarizers were used to create a linearly 
polarized signal for the polarizer under test.  The 
analyzers were angled in the beam path to prevent 
standing waves from forming in the system and 
skewing the results.
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was immeasurably low and flat across the entire frequency range (Fig. 55).  However, the

predicted etalon-induced standing wave was present, with the correct period of 142 GHz 

and a peak-to-valley ratio of approximately 2.0 dB.  With these initial scans completed 

the polarizers were then tested in S- and P-polarizations.  

The effect of varying period was tested first, namely the transmission of the 

32x40 µm and 80x100 µm polarizers.  The results are plotted in Fig. 56 whereby the S- 

and P-transmission are in good quantitative and qualitative agreement with the 

simulations (Fig. 51).  The 32x40 µm polarizer displayed higher S-transmission (Fig.

56(a)) than the 80x100 µm polarizer, and higher than the geometric optics limit of -7 dB 

at all tested frequencies.  This confirms the earlier assertions that decreasing the polarizer 

period to far sub-wavelength values increases the EOT effects.  Just as in simulation, the 

minimum transmission through the 32x40 µm polarizer was -4 dB at 1 THz (excluding 
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Figure 55: The experimental THz transmission through the 0.5 mm thick Z-cut single 
crystal quartz polarizer substrates.
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the narrow valley at 700 GHz, which

is thought to be an artifact).  The

transmission through the 80x100 µm

polarizer was slightly lower than

predicted.  As a result the S-

transmission reached the geometric

limit at high frequencies.  This small

difference is not fully understood,

but likely due to fabrication

imperfections on the 80x100 µm

polarizer.  In further agreement with

simulation, the S-transmission

through both polarizers gradually

decreased because of the geometric-

optics effect present as λ/L

decreases, as discussed in the

previous section.  

The P-transmission (Fig.

56(b)) increases gradually with

frequency and the measurements are nearly identical to the simulated results.  As 

predicted, the 32x40 µm polarizer has significantly lower P-transmission – a result of the 

incoming waves not being able to resolve the smaller gaps as readily.  Importantly, these 
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Figure 56: Experimental transmission results for all
three fabricated polarizers on quartz substrates.  
(a) S-transmission. (b) P-transmission. (c) 
extinction ratio.  These results show that smaller 
period and high-FF dramatically increase the 
polarizer extinction ratio without harming S-
transmission a great deal.
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results confirm that reducing the polarizer period is important on high FF polarizers.  The

etalon induced standing wave is present in both S and P results as well, with the expected 

period of 142 GHz and a peak-to-valley depth of ~4 dB for S-polarization, and ~10 dB 

for P-polarization.  The increase in depth compared to the bare quartz substrate (2 dB) is 

because the wire-grid interface is much more reflective than the quartz-air interface.  

Noisy undulations are present in the P-transmission results above 900 GHz and are 

caused by the transmitted signal approaching the instrumental noise floor.  

With higher S-transmission and lower P-transmission, the 32x40 µm polarizer has

much higher extinction ratio (Fig. 56(c)) than the 80x100 µm polarizer, by ~10 dB across 

the spectrum.  The observed experimental extinction ratios are very close to the simulated

predictions.  This result confirms that smaller periods create superior polarizers by taking 

advantage of SSP techniques and EOT.  

Next the FF study was performed experimentally, the results also plotted in 

Fig. 56.  To perform this study the 38x40 µm polarizer was characterized in the same way

as the previous polarizers.  The measured S-transmission for the 38x40 µm polarizer 

(95% FF) agreed very well with the simulated prediction, consistent with large EOT 

effects being present.  The S-transmission was at least 6 dB higher than the predicted 

geometrical limit of -13 dB across the entire frequency range.  S-transmission was lower 

than for the 32x40 µm polarizer, but only by a small margin.  Nevertheless, the 38x40 µm

polarizer still had higher S-transmission than the 80x100 µm polarizer, despite having 

higher FF.  This result supports the simulated effects of polarizer period.  

The measured P-transmission was also very interesting because of the system 
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dynamic range limitations.  This measurement was in the noise floor for nearly the entire 

frequency range for the 38x40 µm polarizer.  Therefore, the P-transmission data shown in

Fig. 56(b) represents an upper bound of the true P-transmission values.  The actual P-

transmission values for the 38x40 µm polarizer are not known, but are at least as low as 

shown here.  The accuracy of the previous polarizer measurements suggests that the 95%-

FF P-transmission should be close to what was predicted by simulation – a very 

encouraging possibility.  In any case, the P-transmission of the 38x40 µm polarizer is 

considerably lower than the 32x40 µm polarizer.

The large EOT observed in the S-polarization combined with the extremely low 

P-transmission mean that the 95% FF polarizer has much higher extinction ratio than 

both 80% FF polarizers.  In addition, the noise-floor-limited P-polarization results mean 

that the 64 dB extinction ratio realized by the 38x40 µm polarizer at 400 GHz is 

minimum-bounded, but still at least 20 dB better than what is seen in commercial free-

standing wire-grid polarizer at the same frequency [85].  The findings in this work, that 

high FF plays such an important role in polarizer design, were new to the THz field.  As 

such, they have been published in peer-reviewed journals [94], [99].
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 4.2.2. Performance at higher THz frequencies

Some THz applications,

such as TDS systems and possibly

the THz FPI spectrum analyzer,

higher frequencies are used.  A

common problem with commercial

free-standing wire-grid polarizers is

that they perform poorly at high

frequency (> 1 THz).  So while it is

evident that high FF is an important

design consideration for the low-

end of the THz spectrum, it is worth

investigating the performance at

high frequencies.  To predict how

high FF effects performance well

above 1 THz, new simulations were

conducted on the polarizers from

0.1 to 5 THz, in 1 THz steps.  The

simulations are summarized in Fig.

57 and show that high FF is indeed

very important above 1 THz.  The

S-transmission (Fig. 57(a))

continues to decrease out to approximately 3 THz for all three polarizers but then begins 
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Figure 57: Simulated performance of the high FF 
polarizers (on quartz) at high frequency.  (a) S-
transmission. (b) P-transmission. (c) extinction 
ratio.  Only the 95% FF polarizer maintains an 
extinction ratio > 30 dB over the entire spectrum, 
while other polarizers had poor performance (< 20 
dB of extinction) at and above 3 THz.  It should be 
noted that a weak absorption signature is known to 
occur in quartz at 3.84 THz, but it is weak and 
rather narrow so should not affect the polarizer 
performance significantly [95].
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to increase above this point.  This is an interesting result and helps to maintain a useful 

extinction ratio, but is not fully understood.  However the accuracy of the previous 

simulations suggest that this is probably accurate as well.  

The P-polarization simulations (Fig. 57(b)) are consistent with simulations and 

experiments below 1 THz.  The P-transmission increases monotonically with frequency.  

As the wavelengths become shorter the electromagnetic behavior should slowly approach

the geometric optical limit (-7,-7, and -13 dB respectively), as happens with all 

polarizers.  The simulations show that this is happening, but it is evident that the P-

transmission through the 38x40 µm polarizer is increasing at a slower rate compared to 

the other two polarizers.  This is expected given the higher fill percentage and 

considerably smaller air-gaps in this polarizer.  As a consequence, the 38x40 µm polarizer

maintains a useful extinction ratio (Fig. 57(c)) across the entire simulated spectrum, still 

providing nearly 40 dB at 5 THz.  The other two, lower FF polarizers do not perform as 

well and are inadequate at and above 3 THz.  This is exemplified by the 80x100 µm 

polarizer which has a negative extinction ratio at 3 THz (more radiation is transmitted in 

P-polarization than in S-polarization).  From these simulations it is evident that having 

small feature sizes compared to the wavelength, and high FF, are important design 

considerations for high-frequency THz performance [99].  

The frequency-domain spectrometer (PB7100) could not be used to test these 

high-frequency predictions, because of the previously mentioned dynamic range 

limitations.  However, initial measurements have been taken on a TDS system that 

provide data out to ~2 THz [100].  The results are shown in Fig. 58 and the extinction 
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ratios in these initial results appear to

be significantly lower than

simulation.  The results below 1 THz

are also substantially lower that

previously measured values.  The

experimental setup used to collect

this data was different, so the cause

for this discrepancy is, at this point,

unknown.  Nonetheless, the 38x40 

µm polarizer still has a higher

extinction ratio in these results by a small margin.  This data represents the highest 

frequency data recorded on these polarizers, as such the TDS engineer will present this at 

IRMMW-THz 2014 (abstract approval pending) [100].

 

 4.2.3. Effective fill-factor designs

The FF study showed that increasing the FF can greatly improve the extinction 

ratio of a wire-grid polarizer through SSP enhancements, but questions still remained 

about how to use SSPs most effectively.  For instance, the 38x40 µm polarizer had a 

much smaller gap size than the other polarizers, it was unclear how much this alone 

effected the performance outcome.  So to gain a greater practical understanding of SSPs a

series of new simulations were conducted (with the same software and parameters) that 

varied FF and period in previously untested combinations.  These simulations eventually 
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Figure 58: 32x40 µm and 38x40 µm polarizer 
extinction ratio measurements from a TDS system 
[100].
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lead to the design and fabrication of a new “effective fill-factor” bi-periodic polarizer 

design with superior high frequency performance in S-polarization.  

First an additional simulation was run to answer the question posed in the 

previous paragraph about the gap size.  The 38x40 µm polarizer was used again, which 

has a 2 µm gap size, and a 2x4 µm polarizer was also simulated.  The FF is obviously 

different between these two designs, 95% vs. 50%, but the gap size is the same.  This 

simulation would determine how much of the enhanced extinction ratio was really a 

result of increasing FF, and not decreasing gap size.  The results from this simulation are 

shown in Fig. 59 and the lower FF 2x4 µm polarizer had drastically lower extinction ratio

(~20 dB)  compared to the 38x40 µm polarizer.  This result is logical because increasing 

the FF physically reduces the area that radiation can use to pass through the polarizer, 

whereas only decreasing period does not.  Then, the large SSP enhancement present in 

the 38x40 µm polarizer allows for high S-transmission, so the extinction ratio improves.  

This result proves that high FF SSP designs offer large improvements to polarizer 

performance.
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The next simulation performed compared the change in transmission as period is 

varied, for two different FF.  Fig. 51 measured how insertion loss as period varied, but 

only for one FF, this simulation compared two FF levels.  It was anticipated that the 

higher FF polarizer would see a slower increase in P-transmission as period increases, 

because this polarizers gap size will change less, and there is a smaller percentage of 

open space.  The results agree with this prediction (Fig. 60(b)) – the P-transmission in the

50% polarizer increases at about twice the rate of the 95% FF polarizer, and another 

noticeable difference in P-transmission is that the lower FF polarizer has a bigger 

performance drop as frequency increases.  Again, the difference in performance as 

frequency changes makes sense, because of geometric factors (the low FF polarizer has 

larger gaps).  
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Figure 59: Extinction ratio of two polarizers with identical air gap size (2 µm), but 
different FF.  This confirms that high FF does indeed have a significant effect on 
polarizer performance.
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In S-polarization (Fig. 60(a)) 

the same geometric effect that

enhances the high FF P-transmission

rejection, causes lower S-

transmission that decreases more

quickly than in the low FF polarizer. 

However the decrease in S-

transmission for the high FF

polarizer is not nearly as significant

as the increase in P-transmission for

the low FF polarizer.  Because of

this the high FF polarizer sees a

much slower drop in extinction ratio

(Fig. 60(c)) as the period increases

(about half).  The undulations

present in these results are likely a

result of the standing waves shifting

because of phase changes as the

period changes.

Using the results from these simulations, and the experiments in the previous 

section, a new design was created (Fig. 61(b)).  The goal of this design was to mimic the 

high FF polarizer performance in P-polarization, while at the same time decreasing the 
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Figure 60: High FF polarizers are less sensitive to 
period change.  S-transmission (a) decreases more 
noticably for high FF, but the P-transmission (b) 
increases at a much faster rate for the low FF 
polarizers.  The extinction ratio (c) for high FF 
polarizer decreases more slowly with period as a 
result.
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geometric effect seen in S-polarization, thereby improving the performance of the 

polarizer by reducing reflection of the desired (S-polarized) signal.  This idea germinated 

from the simulation in Fig. 59 which showed that high FF greatly decreases P-

transmission, and from Fig. 60 which showed that small period gratings greatly 

outperform larger period gratings. So if both high FF and smaller gratings could be 

combined, without creating the need for smaller fabrication capabilities, the THZ 

polarizer performance could be improved.  Accomplishing a high S-transmission could 

also have the benefit of increasing extinction ratio.  The new design was called an 

effective fill-factor design (EFF).  The EFF design is similar to the regular high FF 

design, but the metal polarizer strip is divided into many smaller strips.  Dividing the 

strips makes the actual FF of the polarizer much lower, 40%.  Because the gaps in the 

metal strips are so small, the incoming P-polarized wavelengths should still be highly 

reflected, P-transmission should be mostly determined by the size of the large gap.  

However in S-polarization the lower actual FF and SSP effects from the smaller grating 

should allow more signal to pass.  In the design shown here the regular polarizer (Fig.

61(a)) is 30x40 µm and the EFF polarizer (Fig. 61(b)) is labeled as 30x40x2x2 µm 

(30x40 µm with 2 µm wide strips, separated by 2 µm).  
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The results (Fig. 62) from the EFF simulations agreed well with prediction; as 

frequency increases the S-transmission (Fig. 62(a)) trends very flat for the EFF polarizer, 

with very little reflection (minimum transmission of -1.75 dB), while S-transmission 

through the ordinary high FF polarizer gradually decreases with frequency.  Then in P-

polarization (Fig. 62(b)) the two designs have nearly identical performance (<1 dB 

difference), with the regular polarizer having slightly lower P-transmission.  This was an 

exciting result, because it meant that high FF polarizer extinction ratios can be achieved 

without suffering from high insertion loss in S-polarization.  As shown here the two 

polarizers should have nearly identical extinction ratio (Fig. 62(c)).  The only limiting 

factor for this design is fabrication capability (i.e. minimum spatial resolution), the design

chosen here was made with this consideration as the strips and small gaps are 2 µm, 

equaling the smallest resolution possible with the available fabrication facilities. 
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Figure 61: (a) Normal 75% FF polarizer unit cell, as it appears in HFSS.  (b) 75% EFF 
design with 40% actual FF.
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To confirm the EFF design

simulations the two polarizers from

Fig. 61 were then fabricated with the

same fabrication process used in

chapter III.  The polarizers were also

tested in the same photomixing

spectrometer setup and Fig. 63

shows the results.  The S-

transmission (Fig. 63(a) is indeed

very close between polarizers.  Noise

in the signal makes analyzing the

result more challenging, 

but the EFF polarizer does trend flat

across the measured spectrum, while

the regular high FF polarizer sees a

gradual decrease in S-transmission

with frequency.  The undulations in

this data are larger than expected,

and the maximum values go higher

than 0 dB, both of these factors are likely due to system alignment imperfections caused 

by the analyzing polarizers.  In any case, this data agrees with simulation that the EFF 

polarizer performs better in S-polarization at high frequency.  
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Figure 62: Simulated transmission through the 75%
FF and EFF polarizers.  (a) S-transmission, here 
the EFF polarizer trends flat across the spectrum, 
the high FF polarizer has a gradual decrease.  (b) 
P-transmission, the two polarizers are nearly 
identical in performance. (c) Extinction ratio, both 
polarizers are nearly identical, but because of 
superior S-transmission the EFF polarizer begins 
to overtake the high FF polarizer.
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The P-polarization results

(Fig. 63(b)) are very exciting as this

is what would determine the

usefulness of the EFF design.  The

EFF design appears to work as

predicted.  The P-transmission of the

two polarizers is virtually identical,

without a plot legend it would be

impossible to predict which polarizer

corresponds to each curve.  The key

factor that allows this design is that

smaller periods have lower P-

transmission, so the overall P-

transmission through the EFF design

is dominated by the larger 40 µm

period.  Once again, this is illustrated

in Fig. 60(b) where the smallest

simulated period (5 µm) has at least

10 dB lower P-transmission than the 40 µm period polarizers.  Because of the close 

performance of the high FF and EFF polarizers, the extinction ratio results are also 

virtually identical (Fig. 63(c)).
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Figure 63: Experimental measurements of the 
fabricated EFF and corresponding high FF 
polarizers.  (a) S-transmission, the two polarizers 
ae close but the EFF polarizer is trending flatter.  
(b) P-transmission, the two polarizers are nearly 
identical.  (c) extinction ratio, once again the two 
polarizers are nearly identical.
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The EFF design could be an

important advancement for wire-grid

THZ polarizers because of their

lower insertion loss.  In fact, this

polarizer design was eventually

chosen for the SSP polarizer

enhanced THz FPI because of the S-

transmission efficiency.  In THz

systems every dB of power is

important, because there isn't much

power available (see the power

output values in chapter II).  So in

the case of a circularly polarizer

incident signal, like that from the

antenna design used in chapter II, the

EFF polarizers will allow more of

that signal to enter the FPI cavity,

thereby increasing the SNR in the

spectrum analyzer.  For example, for a perfectly circular input at 900 GHz only 3 dB of 

signal will be kept from entering the FPI cavity with an EFF polarizer, because there is no

S-transmission loss at this frequency.  However the 38x40 µm high FF polarizer will lose 

twice the signal, ~6 dB, because of its higher S-polarization reflectance.  The work done 
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Figure 64: Performance of 90x100 µm FF and 
90x100x3x1 EFF designs.  (a) S-transmission. (b) 
P-transmission.  (c) extinction ratio.  This 
simulation used bother higher FF and larger period
to provide a better example of how EFF "bi-
periodic" polarizers can enhance performance.
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here has certainly improved the practical understanding of THz polarizers and gratings, 

with both the high FF designs and the EFF designs.  Because of this the EFF designs 

were recently presented at an international THz conference [98].

As a final note on EFF designs, it was realized after the experiments that the EFF 

technique would be better illustrated by a higher FF design, or a larger period.  So 

simulations were then done with a 90x100x3x1 (3 µm strips separated by 1µm) µm EFF 

polarizer design (Fig. 64).  This design was never fabricated, but the simulation results 

shown below help to reinforce the benefits of this design technique.  Here the benefit in 

S-transmission is much more pronounced (Fig. 64(a)), where the smaller grating allows 

significantly more transmission (~10 dB at 900 GHz).  The smaller grating even enhances

the P-transmission (Fig. 64(b)) rejection slightly by slowing the rate at which p-

transmission increases.  This is not yet fully understood electromagnetically but may be 

caused by additional field cancellation effects created by electric fields oscillating parallel

to the wires.  As a results of better S and P performance this EFF design has a much 

higher extinction ratio (Fig. 64(c)) than the regular 90x100 µm polarizer.  

4.3. A Summary of structured-surface-plasmons and their benefit to the linear 

polarizer

The research carried out in this work has advanced the design, performance, and 

understanding of Structured Surface plasmons in the THz field, primarily through the 

concepts of sub-wavelength period and high (>90%) fill-factor as applied to wire-grid 

polarizers.  These techniques could likely be applied to other sub-wavelength 
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components, as long as they have a periodic geometry.  This could include metamaterial 

THz bandpass filters [101] or Schottky diode detector arrays.  Experiments have shown 

excellent performance from the high-FF polarizers from 0.2 to 1.0 THz, and simulations 

predict good performance at much higher frequencies as well.  From a practical 

standpoint, the polarizers described in this chapter cost a fraction of a free-standing wire-

grid, have superior THz performance, and are more robust.  

A new bi-periodic polarizer was also demonstrated, called an effective-fill-factor 

polarizer (EFF).  This polarizer can recreate the S-polarized performance of a low-FF 

polarizer, but the P-polarized performance of a high-FF polarizer.  As such, the S-

polarized performance of the substrate-based, EFF polarizers, combined with their 

flatness (because of the optically polished substrate), makes them perfect for use as 

polarizing mirrors in the FPI.  The next chapter will discuss a new FPI design that uses 

the 30x40x2x2 µm EFF polarizers as the resonant mirrors.  In addition to the publications

already published on the high FF [94], [99] and EFF [98] polarizers, four new conference

proceedings have been submitted to IRMMW-THz 2014 and await approval.  
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 5.  Improving the THz Fabry-Perot with linear polarizers

The previous chapter explained the polarizers created for this work in detail.  With

the advancements made on these components, this final chapter will wrap up the research

plan presented in the previous chapters.  Here the polarizers will be used to improve the 

THz FPI spectrum analyzer.  Then the new extrinsic THz PC switches will be used as a 

source of THz radiation in a demonstration of the FPI with polarizing reflectors.  This is 

shown by the dashed box in Fig. 65, which now encompasses the entire research plan.
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Figure 65: The research plan for this work.  The presentation of the polarizing FPI in 
this chapter represents the culmination of the work done in all of the previous chapters.
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Polarizers have many applications: they can be used as beamsplitters for 

interferometers, or for other instruments such as autocorrelators.  When P-polarized light 

is strongly rejected by the polarizer, reflection is at least 99.9% for a high EFF THz wire-

grid polarizer.  This means that they could also be well suited as variable FPI reflectors, 

provided that the incident radiation is polarized.  S- and P-polarzations are separated by 

90 degrees, and in between these two orientations the reflectivity of a polarizer changes 

monotonically.  This is illustrated in Fig. 66, where the reflectance of a polarizer was 

calculated from the experimental transmission (R = 1 – T) as a function of rotation angle. 

The reflectance of the polarizer in this test reached 95% (at 100 GHz) 

approximately 23 degrees away from P-polarization.  The slope of the reflectance vs. 

rotation is not steep at this point, so tuning the desired reflectance of 95% for FPI 

reflectors is accomplished quite easily because of the insensitivity to rotation.  If the 
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Figure 66: Reflectance of a generic THz polarizer at different rotation angles between S- 
and P-polarization, at normal incidence, for the 30x40x2x2 µm EFF polarizer.  This 
experiment was conducted with a 100 GHz linearly polarizer signal.
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mirrors of the FPI were indeed polarizers, the reflectivity could be tuned to be exactly the

desired value up to at least 2 THz.  This makes polarizers a perfect candidate for mirrors. 

There is another advantage to using polarizers as well, which is that the spectral 

selectivity (Q-factor) of the FPI would also be easily tunable.  So if the spectrum being 

measured was from a very powerful source, the Q-factor of the FPI could be increased to 

obtain a finer scan resolution.  Alternatively, if there was very little power available, a 

high Q-factor might push the signal into the noise floor of the detector, so a lower Q and 

less precise resolution could be used.  This makes a polarizer-based FPI far more flexible 

than other designs.  

Since the polarizers can be tuned for reflectance, this removes another limitation.  

Like the wire-mesh, polarizers have reflectance that changes with frequency (although 

not as severely).  So an advanced polarizer FPI design could have polarizer rotation angle

that changes during the spectral scan, to keep reflectance constant.  An example of the 

change in reflectance vs. frequency of a polarizer is shown in Fig. 67.  This plot is 

transmission, but again, R = 1-T is a safe assumption for these wire-grid polarizers 

because the crystal quartz substrates have negligible THz absorption.  
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5.1. The linear polarizer enhanced THz Fabry-Perot interferometer

In the previous chapter the polarizer chosen for use as FPI reflectors was 

described: the 30x40x2x2 µm EFF polarizer.  This one is a good choice because it has 

high eT and good transparency in S-polarization.  The new FPI design (Fig. 68) was 

created using a CNC machine, linear translation stage, 2-inch rotation stages, and the 

same Zaber linear actuators used for the previous FPI design.  A linear translation stage 

was used instead of a cage rod system because it was easier to mount rotation stages, 

however, it had other benefits as well.  The problems with the cage rod FPI system were 

explained in great detail in chapter III and Appendix A, where binding, rocking/leaning, 

nonparallel FPI mirrors, and motor slipping could occur, thus skewing interferometric 

results.  The linear translation stage moves much more smoothly, easily, and precisely in 

one plane only.  So all of the previous problems associated with the cage-rod system were
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Figure 67: Transmission through the 30x40x2x2 µm EFF polarizer.  Here the change in 
transmission (and thus reflection) vs. frequency is shown.
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removed.  The tunable FPI plate was simply mounted to the end of the translation stage, 

and the stationary mirror was mounted 1 cm past the end of the translation stage (Fig. 68 

shows the stage extended some distance).  

To move the translation stage the Zaber linear actuator was coupled to the stage as

shown.  The translation stage was spring loaded, so a small but constant force pushed the 

stage into the linear actuator at all times.  Because of this the linear stage didn't require 

fastening to the linear actuator.  So when the linear actuator extended, the stage would 

advance forward because of the actuator force, and when the linear actuator retracted the 

stage would retract in kind.  Since the same linear actuator was used for this design as in 

chapter III, the same MATLAB code could be used as well.  

To make this FPI design easily transportable, it was mounted to a single 

aluminum plate (pictured) with precisely located mounting holes for the linear actuator, 

the translation stage, and the stationary FPI mirror.  This plate, along with the linear 
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Figure 68: New FPI design.  The linear actuator provides much more stable and reliable 
movement, compared to the cage rod system.  The polarizers are mounted to the front 
surface of the rotation stages to create the FPI cavity.
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actuator mount, and the stationary

mirror mount, were made with a

CNC milling machine.  The first step

in this process was to design each

part with CAD (computer aided

design) software.  BobCAD was

used for this work (designs are

presented in Appendix C).  After the

parts were each designed, they were transformed into the appropriate CNC machine code 

(g-code in this case) and the parts were fabricated.  

The last step in making the new FPI design was mounting the new EFF THz 

polarizers to the rotation stages, so the reflectivity of the FPI could be adjusted easily.  

This would allow the FPI to be set for high spectral resolution and lower transmission, or 

for lower resolution but higher power transmission.  The rotation stages are shown in Fig.

68, but the polarizers are difficult to see, so one is shown separately in Fig. 69.  The 

method used to mount the polarizer to the rotation stage was simple.  A retaining ring was

partially screwed into the center of the rotation stage and glued into place, then the 

polarizer was glued to the retaining ring.  The polarizers were mounted this way so they 

would come into contact with each other when used as reflectors.  Therefore, the 

fundamental-mode bandpass feature of the FPI could be measured, even at very high 

frequency (>1 THz).  Careful attention was paid while mounting the polarizers to make 

sure the metal polarizer strips were on the top surface.  
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Figure 69: A polarizer based FPI mirror.  Using 
glue, the polarizer is attached so it protrudes from 
the front surface of the rotation stage.  
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 5.1.1. Fabry-Perot measurements at 530 GHz

After all of the individual FPI components were made, the system was assembled 

for testing.  The first step in testing was aligning the FPI polarizers so they were both 

~95% reflective, this way the system would have good spectral selectivity and the input 

signal would resonate in the cavity.  To do this alignment, a linearly polarized 100 GHz 

source (Gunn oscillator) was used, and the polarizers were individually adjusted so that 

the transmission was ~5%.  Then both FPI mirrors were put in the system and spectral 

measurements began.  

The first spectral measurements taken with the new polarizing FPI consisted of 

repeating the 530 GHz scans taken with the wire-mesh based FPI.  This experiment 

would serve as proof that the polarizing FPI design can also discriminate THz 

frequencies.  The experimental setup can be seen in Fig. 70.  To match the experiment 
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Figure 70: Experimental setup of the polarizing FPI, with the coherent, single 
wavelength, 530 GHz source.
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performed on the wire mesh FPI the

scans were again taken at three

different scan times, 0.5, 0.1, and

0.05 seconds.  However this time the

scan distance was 600 microns, so

the resolutions were slightly reduce

to 0.2, 1, and 2 µm/sample.

Importantly these three resolutions

are all still above the previously

stated resolution requirement of 2.43 

µm/sample, needed to fully resolve

the bandpass features if the Q of the

FPI is 77.  

The FPI reflectors in this

setup are guaranteed to be very flat

because of the optically polished, quartz polarizer substrate (however they are not 

guaranteed to be parallel).  Because of this the zeroth order bandpass mode of the FPI 

could be realized (when the reflectors are in contact).  A 600 µm scan distance allowed 

for the scanning of the zeroth order mode, along with the fundamental bandpass mode 

and the 2nd mode, which should be centered at ~566 µm.  The results of this experiment 

are shown in Fig. 71 where the bandpass modes are present and located where expected.  

The first mode is again located at approximately 283 µm, and the separation between the 
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Figure 71: Polarizing FPI scans at 530 GHz.  The 
bandpass modes are again seen here, with the 
correct spacing of ~283 µm.

161



features is correct as well.  The resolution of the bandpass features was quite a bit lower 

than desired, with a FWHM of ~34 µm, corresponding with a ∆f = 64 GHz and a Q of 

only ~8.5.  However this is simply an alignment issue (the plates weren't perfectly 

parallel and the source wasn't collimated).  As discussed in Chapter III, nonparallel FPI 

plates and uncollimated input signal can significantly broaden the bandpass features.  

Nevertheless, the polarizing FPI still displayed the ability to discriminate frequencies 

with a high pass-band to rejection-band ratio of >10 dB.  This result was obtained with a 

minimum scan rate of 0.1 seconds per 600 µm, as scan time decreased below this limit 

the results became inaccurate and unreliable.  The resolution of these scans could likely 

be improved with simple collimating optics and mirror re-alignment, at the time of this 

publication there was not much time was available for optimization.  With these results in

hand, the FPI was then used to record the spectrum of the extrinsic ErAs:GaAs PC 

switch.

 

 5.1.2. Fabry-Perot measurements on the 1550 nm extrinsic PC switch

Spectral measurements were performed on the extrinsic PC switches described in 

chapter II, this test represented the first scans taken with the new tunable THZ FPI 

spectrum analyzer on a broadband THz source.  The experimental setup is shown in Fig

72.  The setup will be described from right to left.  First the ultra-fast mode-locked-laser 

is coupled from fiber into free-space.  Then the laser beam is modulated using a 

mechanical chopper and focused on to the PC switch using a 10x microscope objective.  

At this point the PC switch produces THz power and it is coupled into free-space using a 
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hyper-hemispherical silicon lens.  This is identical to the setup used in chapter II for PC 

switch power measurements.  After the THz power is coupled into free-space, it 

propagates to the FPI spectrum analyzer.  Some signal transmits through the FPI and is 

then measured using a pyroelectric detector, or a narrow-band zero-bias Schottky Diode 

detector.  Voltage readings are taken from the detector, amplified with a 30 dB gain low-

noise amplifier, and measured with a standard lock-in amplifier.  Another benefit of the 

translation stage FPI design is visible in Fig. 72: ample room is available for mounting 

the detector in the beam path.

Unfortunately the laser used for this experiment was only available for a short 

time due to a lending agreement with the laser manufacturer, so testing was not extensive.
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Figure 72: Experimental setup of spectral scans taken with the tunable THz FPI.  
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However, some exciting initial data was still obtained.  The results were collected using 

the same four detectors as in chapter II, a broadband pyroelectric detector, and three zero-

bias Schottky diode detectors centered at 100, 415, and 625 GHz.  First the 100 GHz 

Schottky diode detector was used.  This makes sense for the first test, because this 

detector has excellent responsivity (~1500 V/W [102]) over a narrow bandwidth (Fig.

73), so other THz frequencies being emitted by the PC switch should not interfere with 

the result.  Therefore, because the detector bandwidth is much narrower than the PC 

switch emission bandwidth the bandpass feature should be measured if the FPI is 

functioning properly.  Another factor that makes this detector appropriate for the first test 

is that the PC switch produces more power at around 100 GHz than it does at higher 

frequencies, so plenty of signal should be available for measurement.

The results of these first

scans are shown in Fig. 74, where it

is clear that the FPI spectrum

analyzer qualitatively identified the

100 GHz detector responivity

spectrum convolved with the power

from the PC switch.  This is an

excellent result and provides solid

proof-of-concept for the polarizer-based THz FPI spectrum analyzer.  Comparing this 

result with the detector responsivity curve (Fig. 73) is particularly useful, as the 

bandwidths of the two curves are quite close.  The small valley at 100 GHz in the 
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Figure 73: Responsivity curves of the zero-bias 
Schottky diode detectors.  
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responsivity curve corresponds to the shoulder in the FPI scan near the same frequency.  

The pass-band to rejection-band ratio of this measurement was found to be ~7.5 dB and 

the signal-to-noise ratio was ~39 dB.  The scan was taken up to 1 THz, but the lower 

frequencies were zoomed in for better analysis in Fig. 74(a), and the higher frequencies 

are shown in Fig. 74(b).  

The next scan was taken with

the 400 GHz Schottky detector and

the results were not as successful

(Fig. 75).  The fundamental bandpass

feature was still measured but the

peak is only ~3 dB above the out-of-

band signal and was not located at

the correct frequency.  There are

several factors that could have

affected the outcome with this

detector, and could easily be

corrected in future work.  The first is

that the FPI plates may have become slightly offset from the correct absolute positions.  

Therefore, the peak feature, which appears to be ~350 GHz, could actually be at the 

correct frequency.  Resetting the FPI zero point before scanning would fix this.  Another 

factor that could improve this result is using a higher resolution.  It was not realized at the

time of the scan, but the resolution was not set high enough for this frequency, to 
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Figure 74: THz FPI spectrum analyzer scan results 
with a 100 GHz zero-bias Schottky diode detector.  
The results from this scan were very accurate, the 
fundamental bandpass mode was accurately 
measured, with the correct spectral width.

165



illustrate this the individual data points were also plotted in Fig. 75.  Since the current 

code moves the FPI plate a set distance for each scan (power vs. wavelength is 

measured), the frequency change between data points increases linearly (f = c/λ) and high

frequencies have lower resolution.  Adding more data points would give a smoother, and 

more accurate curve, and this could easily be corrected with the MATLAB code already 

written.  Another issue is that the reflectance of the polarizers that compose the FPI 

mirrors is known to change with frequency, and the polarizers were aligned at 100 GHz.  

However at the orientations the polarizers are in (neither one is S or P) the value of the 

reflectance change between 100 and 400 GHz is unclear.  A solution for this problem 

would be to calibrate the reflectance change, and use a motorized rotation stage for the 

polarizer, so that the software could rotate the mirror during the scan and keep the 

reflectance constant for the entire scan.  This is a major design change that is 

recommended for future work.  
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For the 600 GHz detector, scans were attempted but they were in the noise floor, 

likely from the same problems described for the 400 GHz detector.  So these scans are 

not shown here.  Another problem that may have made this experiment more difficult is 

that the laser used to drive the PC switch had lower power than the laser used in chapter 

II, so the available THz power was well under the level used in Chapter II.

The final scans with the polarizer-based FPI were taken with a broadband 

pyroelectric detector (Figs. 76,77).  This detector is known to have a flat responsivity of 

~5000 V/W across the THz spectrum.  As shown in Fig. 76 the result from ~80 to 300 

GHz was very good, with the 3-dB bandwidth comparing favorably with the result found 

in chapter II (~350 GHz).  Here the 3-dB point is not shown but can be estimated as 

roughly 330 GHz.  This is a gratifying result, especially when reflectance changes are 

considered.  The results from the polarizer testing sections in this chapter show that the 
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Figure 75: FPI scan results with the 415 GHz Schottky detector.  The results were 
difficult to analyze, as the power was very low.  Resolution was also poor and should 
have been at least double. 
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reflectance changes with frequency, but how much it changes in this setup is unclear.  If 

the reflectance of the mirrors increases, then the transmitted power for a broadband 

source will decrease artificially due to the higher-Q bandpass feature.  The results shown 

here confirm that the polarizer-based FPI spectrum analyzer works, but needs some more 

development.  

The scan in Fig. 76 was only shown up to 300 GHz because of a problem 

encountered at higher frequencies.  Above 300 GHz the detected power began to 

increase, rather than decrease as the THz spectrum must.  This happens because 

wavelengths much longer than the FPI cavity length always experience constructive 

interference, and therefore high transmission through the FPI.  The full scan out to ~1 

THz is shown in Fig. 77, the result at high frequency does not mean the FPI was 

unsuccessful though, because this problem could be solved by developing high-pass 

filters or combining results from band-limited detectors, like the Schottky diodes 
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Figure 76: FPI scan with the pyro-electric detector.  These results are out to 300 GHz, 
where the measured spectrum closely resembled the spectrum measured in chapter II.
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described earlier in this section.  

After these tests were completed the laser required to operate the PC switch 

became unavailable, so no more experiments could be completed.  Nonetheless, the 

results shown here are exciting because they prove that the THz FPI is capable of 

effectively discriminating and detecting THz frequencies.  Some improvement on the 

system is still needed for future work.  One further improvement would be using an input 

lens to collimate the beam and reduce walk-off losses, and then an output lens to better 

collect the transmitted power in the detector.  In a later development stage, a more 

expensive linear actuator could be utilized that would provide position information in real

time through access to the motor feedback loop.  This way, the mirror separation 

information would be more accurate.  In any case, this work represents the first ever 

demonstration of a polarizer-based FPI used for THz spectrum analysis, thus furthering 

the capabilities of the THz field and potentially leading to an inexpensive and accurate 
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Figure 77: The pyroelectric scan out to 1 THz with the FPI.  Here the need for a high-
pass filter is evident.  Low frequency leak through skews the results at high frequency.
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new tool that could be used for transmission and reflection spectroscopy.  This new THz 

FPI will be presented to the THz community at IRMMW-THz 2014, pending abstract 

approval [103].
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 6.  Summary and future direction

This dissertation and the works published during its completion have successfully 

introduced new and original technology into the THz field.  The field of THz 

spectroscopy is constantly evolving and this work is representative of that.  Of particular 

importance, for practicality reasons, is developing better reflective spectroscopy devices 

and systems.  The new 1550 nm, extrinsic PC switches developed here have been shown 

to have THz power and bandwidth comparable with current 800 nm driven switches, and 

will greatly enhance the practicality of THz systems by lowering the cost of components 

and enabling more compact systems that are easier to setup, because fiber-optic lasers 

and components can be utilized.  

The new Fabry-Perot based spectrum analyzer also represents new possibilities 

for THz spectroscopy, especially when enhanced with the polarizers developed here.  

This spectrum analyzer concept is more flexible and less cumbersome than current TDS 

and photomixing systems.  Further development and the use of focusing optics could 

realistically allow this FPI to be used in stand-off reflective spectroscopy scenarios, 

where TDS systems can not.  The new high FF and EFF polarizer techniques developed 

in chapter IV have proven to be useful for the FPI spectrum analyzers, but also further the

THz field more generally because THz polarizers or SSP enhanced metamaterials are 

used in many THz labs.  The work done here has increased the understanding of how 
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SSPs can be used, and the polarizers represent a direct improvement of a commonly used 

component. 

In chapter 2 several experiments were conducted to further analyze the ultrafast 

extrinsic photoconductive effect discovered in ErAs:GaAs, and possibly find ways to 

improve the performance of this photoconductive mechanism.  In this light, several 

suggestions for future research are given here:  (1)  The Erbium concentration in the layer

should be increased again.  3% Erbium bearing layers have been grown in the past, but 

this concentration of Er was high enough to negatively affect the crystalline purity of the 

GaAs.  Nevertheless, since the 2% Er layer exhibited a distinct performance increase over

a 1% Er layer, another increase should be attempted, such as 2.5%.  

(2)  The thickness of the ErAs:GaAs layer should be increased.  The ErAs:GaAs 

material has a significantly lower absorption coefficient with 1550 nm photons than with 

800 nm photons.  Increasing the thickness of the photoconductive layer is an easy way to 

increase absorption, so this is be worth trying.

(3)  Another way to increase 1550 nm absorption is by growing dielectric mirrors 

in the photoconductive layer.  This has been done in the past (seen in [6]) with PC 

switches driven with 800 nm lasers.  At 800 nm it was deemed unnecessary and actually 

lead to device failure in some cases, because the increased absorption lead to an increase 

in Joule heating.  However, with the significantly lower absorption coefficient of 1550 

nm photons this would be less of a problem.

(4) Last, lasers are often not centered at exactly 1550 nm.  The experiment done in

section 2.2.4 shows an increase in photocurrent as the wavelength decreases below 1550 
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nm.  Therefore a laser centered closer to 1530 nm may perform better.

 The discovery made in chapter 2, that the extrinsic photoconductive effect can 

also be used for photomixing, represents another significant area of research for the 

future.  This is especially true since photomixing spectrometers are not path length 

dependent, so they might also be suitable for reflective spectroscopy. 

Chapter 3 presents the new FPI based spectrum analyzer and several design 

iterations were presented, culminating in the final design used in Chapter V with high 

EFF polarizers.  The FPI spectrum analyzer could be improved in a number of ways, and 

would need to be for commercial use.  The research on improving the FPI should 

primarily focus on improving its mechanical operation (better linear motor, adding 

motorized rotation stages).  Another improvement could be adding precisely aligned 

optics to the system, to focus and collimate more signal into the FPI, thus improving the 

SNR.  For future research, improved THz bandpass filters would be beneficial, for 

limiting low-frequency transmission through during high-frequency measurements.  

Some work has already been done of THz bandpass filters, this should be investigated 

further [101].  In any case, this new spectrum analyzer idea is very promising and has 

already motivated other research groups to pursue it [84].  

The polarizers detailed in chapter IV out-perform commercially available 

polarizers already, especially in the extinction ratio metric, but there is still room for 

future research here as well.  The easiest and most imminent improvement would be 

adding anti-reflection (AR) coatings for frequencies of interest.  Quarter-wave AR 

coatings have been added to substrate-based THz components in the past using cheap 
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polyethylene sheets.  This would add virtually nothing to the cost of the polarizer, while 

improving its performance.  An in depth analysis of the polarizer performance in 

beamsplitter configuration would also be useful future research.  Beamsplitters are often 

important components in many types in interferometers, such as the Martin-Puplett, and 

polarizers make useful beamsplitters because of the ability to change the 

transmission/reflection ratio by rotating the polarizer.

Successful reflective spectroscopy systems may be important to the future of THz 

systems.  They would allow for the non-invasive identification of concealed items.  This 

is be especially useful in security applications where chemicals of interest are often 

hidden on the human body and privacy is a primary concern.  In any case, in a realistic 

scenario items are not carefully packaged in a lab for placement into a transmission 

spectroscopy system.  This work is important because all of the technology presented 

here, while being useful for transmission spectroscopy systems, is also important for 

achieving the first practical reflective THz spectroscopy systems.  
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Appendix A

Additional design 1: Ball-bearing based Fabry-Perot plates with stretched 

copper mesh mirrors

A second wire-mesh FPI spectrum analyzer design was made as a response to the 

large number of design flaws present in the first model.  Of particular interest in fixing 

was the rock/lean issues that plague that mirror plates, and the relative non-flatness of the
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Figure 78: Design layout for new stationary FPI mirror mounting plate.  Single peice 
construction should resist leaning more effectively.  The cage rod system is again 30 mm.
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wire-mesh-mirrors.  Fixing the rocking problem was a three step process: the stationary 

mirror plate was redesigned to resist leaning, the bushings in the tunable mirror plate 

were replaced with more precise linear-ball-bearings, and a superior mount was made to 

hold the motor.  For fixing the mirror flatness issues, a new mounting system was 

developed to hold the wire-mesh on the mirror plates.  

The new mirror plate for the stationary mirror was custom machined out of 6061 

aluminum, the design is shown in Fig 78.  This plate is approximately twice as thick as 

the previous plate, and about 2.5 inches taller.  This was done to increase the structural 

rigidity to resist leaning.  The cage rods were also increased in thickness, from 6 to 6.35 

mm (¼ inch).  Aside from this, this plate is identical to the previous plate.  Set screws 

were included to lock the cage rods into place and mounting screw was put on the bottom

so the plate-height could be adjusted with optical posts or some other mounting system.  

The most significant change came in the design of the tunable mirror plate (Fig.

79).  This plate was made ¾ inch thick and the holes drilled for the bearings were ½ inch 

in diameter.  The ball-bearings (shown in the bottom right corner of Fig. 79) had a ¼ inch

inside (6.35 mm) diameter, the same as the new cage-rod diameter.  Therefore the 

bearings fit tightly on the cage-rods and as a consequence there was no room for the 

tunable mirror plate to “rock” from rotational forces, thus eliminating that problem.  The 

ball-bearings also reduced sliding friction, so a smaller and more precise linear actuator 

could be used.  The new linear actuator had an even smaller minimum step size (92.5 nm)

but was still capable of moving at up to 25 mm/s.  As mentioned in the previous section, 

the maximum movement speed should be at least 0.45 mm/s and the minimum step size 
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should be under 1 µm, both requirements are easily surpassed by this linear actuator.

A new mount was also designed and fabricated to hold the linear actuator.  

Previously, the linear actuator was mounted to an adjustable-height platform so that it's 

vertical position could be precisely adjusted.  This was necessary because of the bushing-

binding issues.  With the linear-ball-bearing FPI mirror plate this issue was gone, so a 

simple-but-rigid motor mount was made to hold the actuator and reduce FPI setup time.  

Fig. 80 shows a comparison of the new FPI system (on the right) to the original model 

(on the left), and the linear actuator mount is visible here.  With this mount the linear 
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Figure 79: The tunable mirror mounting plate.  This plate is thicker and has larger cage-
rod holes to accomidate linear-ball-bearings.   The ball-bearings help eliminate binding 
and rocking.
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actuator is simply screwed onto the motor mount, which is anchored to the work bench 

with a standard optical post.  

The final design change made in this iteration was changing the way in which the 

wire-meshes were mounted to the FPI mirror mounting plates.  Finding a way to make 

the wire-meshes flatter was important for the integrity of the FPI scan results and would 

reduce noise.  So instead of simply laying the meshes over the 1 inch diameter hole on 

the mounting plates, the meshes were stretched over the holes using a tensioner ring.  The

concept is illustrated graphically in figure 81.  In this design, the raised section of the 
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Figure 80: The second FPI design compared side by side with the original.  The new 
design slides more easily on the cage-rods, so a smaller and more precise linear actuator
was used.  The actuator was coupled to a right-angle bracket on the bottom of the 
tunable mirror plate; eliminating the bushing related binding problems made this simple 
coupling strategy possible.
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tensioner right has an outside diameter 1 mm smaller than the inside diameter of the 1 

inch mounting plate hole (so the raised section of the ring fit inside the mounting plate 

hole).  The raised section was also 1 mm high.  The mesh was woven copper and it did 

not readily bend at the tight angles necessary to fit between the tensioner ring and the 

mounting plate hole.  So the act of forcing the mesh into this space, by pushing the ring 

into the hole, stretched it flat.  The dimensions of the mesh unit cell weren't altered any, 

but the mesh-mirror surface was taut and flat.  To hold the tensioner ring in place it was 

then screwed into the mounting plate through the holes seen in the top view of the ring in 

Fig 81.
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Figure 81: The wire-mesh tensioner ring concept.  Pressing this ring into the mounting 
plate hole would stretch the wire-mesh, and force it to be flat.
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 Design advances

This FPI THz spectrum analyzer design represented a number of advances over 

the original model.  Most importantly the rocking problem in the first design was 

completely solved by switching from a bushing-based system to a stronger, linear-ball-

bearing based cage-rod sliding system.  Eliminating the rocking problem fixed a number 

of problems. First the mirrors maintained perfect parallel orientation at all times, thus 

improving the scanning results (less noisy and smaller, more correct line-width).  If not 

very carefully aligned, the old bushing-based system would bind on the cage-rods and 

cause the motor to slip, in this new design that does not happen.  Because there was no 

binding the linear actuator could be moved to a lower position, farther from the beam 

patch; this creates more room in the system for other components, such as the detectors.  

The linear actuator itself was also switched to a smaller, more precise model; once again 

a possibility because the binding effects were no longer present.  Mounting the linear 

actuator was then simplified because of the new mounting apparatus.  The last 

improvement, but also a significant one, was that the wire-mesh-mirrors were mounted 

with a new technique that ensured their flatness.  The flat mirrors ensures that the FPI has

a narrow line-width with less noise in the scan results.  

 Design shortcomings or problems

The linear-bearing based FPI improved on some significant areas of weakness, 

but there were still two problems large enough to merit a nearly immediate redesign 

(shown next).  The first problem was minor in comparison to the second, there was still 
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some leaning present in the stationary FPI mirror mounting plate.  Despite the stationary 

plate being very robust, it was still connected to the workbench with an optical post.  The 

point at which the optical post connected to the mirror plate served as a weak point and 

the fulcrum for the leaning.  So a fix for this was still needed.

The second, and more serious problem came from a fundamental design flaw in 

the mesh-tensioning system; the tensioner ring pressed the wire mesh into the inside of 

the mounting plate.  So even when the two FPI plates were in contact with each other 

there was a large gap (~6 mm) between the actual mesh mirrors themselves (Fig. 82).  

This meant that the fundamental mode band-pass feature could not be measured because 

the mirrors could not get close enough.  Measuring the fundamental mode was an 

important part of the FPI spectrum analyzer concept, therefore the mesh mounting system

needed to be re-evaluated.  
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Additional design 2: Ball-bearing based Fabry-Perot plates with new mesh 

tensioner design

The THz FPI was redesigned with two goals: making a wire-mesh mirror 

mounting system that would keep both meshes very flat, but also allow them to come into

contact, thus resolving the fundamental bandpass features of a THz signal, and to stop the

stationary FPI mirror plate from “leaning.”  Aside from these two changes, the rest of the 
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Figure 82: FPI mirror mounting plate and tensioner ring design.  With 
this design, the wire-mesh mirrors can not come together thus not 
allowing fundamental mode spectroscopy.
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FPI would remain unchanged.  To accomplish the first goal the tensioner ring design was 

inverted.  Instead of having the tensioner ring push the wire-mesh inside of the mirror 

mounting plate, the mirror mounting plate would push the wire-mesh into and out the 

other side of the tensioner ring, thus leaving the mesh on the outermost surface of the 

mounting plate.  The design layout of the mounting plate is shown in figure 83.  The lip 

that was on the tensioner ring in the previous design is now on the mounting plate, and 

the tensioner ring is flat with an inside diameter 1 mm larger than the outside diameter of 

the lip.  This design again proved to create a very flat wire-mesh mirror surface.

The second goal of this design was to eliminate the leaning problem associated 
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Figure 83: The redesigned FPI mirror mounting plates with the wire-mesh mirror 
stretched outside of the plate, instead of inside.
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with the stationary FPI mirror plate.  To accomplish this lateral bracing was added to the 

mirror plate using optical posts.  Prior to this bracing there was essentially no lateral 

support in the design except for torsional resistance at the mounting point of the 

stationary mirror plate.  The additional optical posts provided a much needed lateral 

brace, with a structural member directly opposing lateral movement of the stationary 

plate itself.  Figure 84 shows the new design fully assembled, in this figure both changes 

are visible.  The design of the new tensioner ring can be seen here too, it is simple a flat 

piece of aluminum that is screwed onto the FPI mirror plates.  Other notable items shown

here include the front side of the motor mount and the screws that hold the linear actuator

to the mount, a better angle for seeing the L-bracket used to transfer force from the linear 

actuator to the tunable FPI mirror, a cage-rod mounting system for holding small THz 

Schottky diode detectors, and an example of how a THz lens could be added to the FPI to

increase signal power.  
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Design advances

Initial testing with this FPI design shows that the problems present in the two 

previous designs were largely eliminated.  This FPI provides steady, consistent scans.  

The FPI mirrors are very flat and maintain a very parallel orientation, and could come 

into contact with each other.  Additionally, the stationary mirror gained enough lateral 

bracing to maintain its position without leaning.  For the wire-mesh-mirror based FPI this

design iteration was the final and best design.  However it was not without flaw.
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Figure 84: The final wire-mesh mirror, tunable THz FPI design.  The new mesh mirror 
mounting system is shown here, with this design the mirrors can comee fully into contact,
thereby allowing fundamental mode spectroscopy.  The lateral bracing for the stationary 
mirror is also shown.  
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Design shortcomings or problems

Some shortcomings were still present in this design.  The linear ball-bearings tend

to wear out rather quickly with time, just a few months.  This is particularly true when the

tunable mirror is removed from the cage-rods, because every time it is put back on the 

cage-rods, some of the steel balls in the linear-bearings fall out.  This appears to be a 

design flaw with the bearings themselves.  Eventually the bearings do not slide well on 

the cage-rods anymore, this is one reason the larger, more powerful linear actuator is 

installed in figure 84.  Another consequence of the bearings wearing out is that more 

lateral forces are exerted on the stationary FPI mirror, so if any leaning problems persist, 

this issue magnifies those problems.  
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Appendix B

MATLAB code for the THz FPI spectrum analyzer

entryToBits()

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Programmer: John Middendorf
% Organization: Wright State University
%
% Data bit format provided by Zaber Technologies
%
% This function will convert a data entry into 4 data packets needed for
% zaber controllers.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [d3 d4 d5 d6] = entryToBits(data)
% Convert negative numbers...
if data<0
    data = 256^4 + data;
end
 
% d6 is the last bit (data must be larger than 256^3 to have a value 
here)
d6 = floor(data / 256^3);
data   = (data) - 256^3 * d6;
 
% d5 is the next largest bit... d5 = (0:256)*256^2
d5 = floor(data / 256^2);
if d5>256
    d5 = 256;
end
 
% d4 is the second smallest bit... d4 = (0:256)*256
data   = data - 256^2 * d5;
d4 = floor(data / 256);
if d4>256
    d4 = 256;
end
 
% d3 is the smallest bit, values are 0:256
d3 = floor(mod(data,256));
if d3>256
    d3 = 256;
end
 

bitsToNumber()
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function will convert data bits back into a number
% Written by John Middendorf, Wright State University
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = bitsToNumber(d3,d4,d5,d6)
 
% Just sum the values...
data = (d6*256^3)+(d5*256^2)+(d4*256)+d3;
 
end

slowScan()

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Programmer: John Middendorf
% Organization: Wright State University
%
% This program will move the Fabry-Perot, and stream voltage readings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [magnitudes] = slowScan(motor,start,time,distance)
% motor == 1 is the NA14D30
% motor == 2 is the NA08B30
 
%% Initialize the LabJack
ljud_LoadDriver  %%load driver
ljud_Constants   %%constants
 
[Error ljHandle] = ljud_OpenLabJack(LJ_dtU6,LJ_ctUSB,'1',1);  %%request 
handle
[Error] = ljud_ePut(ljHandle, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0);  %
% reset
Error_Message(Error)
 
if motor == 1
    motorStep  = .000381;
    motorSpeed = .00371;
else
    motorStep  = .0000925;
    motorSpeed = .000893;
end
 
% Variable list
Loops = 1;
num_channels = 1;
ScanRate = 3; % Set scan rate
buffer = 100; % 5 second buffer time
Scans = (ScanRate/1000) * (time*1000)*2;
global final_array;
 
% Configure for 12-bit resolution
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Error = 
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chAIN_RESOLUTION,12,0,0);
Error_Message(Error)
 
% Configure AIN0 with Bipolar ±10 volt range
Error = ljud_AddRequest(ljHandle,LJ_ioPUT_AIN_RANGE,0,LJ_rgBIP10V,0,0);
Error_Message(Error)
 
% Configure Scan Rate
Error = 
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chSTREAM_SCAN_FREQUENCY,Scan
Rate,0,0);
Error_Message(Error)
 
% Give the driver a 5 second buffer (ScanRate * 4 Channels * 5 Seconds)
Error =  
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chSTREAM_BUFFER_SIZE,ScanRat
e*num_channels*buffer,0,0);
Error_Message(Error)
 
% Configure reads to retrieve whatever data is available without waiting
Error = 
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chSTREAM_WAIT_MODE,LJ_swNONE
,0,0);
Error_Message(Error)
 
% Clear stream channels
Error = ljud_AddRequest(ljHandle,LJ_ioCLEAR_STREAM_CHANNELS,0,0,0,0);
Error_Message(Error)
 
% Define the scan list as AIN0, AIN1, AIN2, and AIN3
Error = ljud_AddRequest(ljHandle,LJ_ioADD_STREAM_CHANNEL,0,0,0,0);
Error_Message(Error)
 
% Execute list of above requests
Error = ljud_GoOne(ljHandle);
Error_Message(Error)
 
%-----------------------------------------------------------------------
---
% Get all results just to check for errors
Error = ljud_GetFirstResult(ljHandle,0,0,0,0,0);
Error_Message (Error)
 
% Run while loop until Error 1006 is returned to ensure that the device 
has
% fully configured its channels before continuing.
while (Error ~= 1006) % 1006 Equates to LJE_NO_MORE_DATA_AVAILABLE
    Error = ljud_GetNextResult(ljHandle,0,0,0,0,0);
    if ((Error ~= 0) && (Error ~= 1006))
        Error_Message (Error)
        break
    end
end 
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%% Start Fabry-Perot move operation
 
%input file name
%filename=input('enter name of file for saving data\n', 's');
%fid = fopen(filename,'r+');
 
% Get speed, distance, and serial port inputs
speed = distance/time %handles.speed
usb = serial('com11');%handles.usb;
fopen(usb);
 
[a b c d] = entryToBits(start/motorStep);
 
fwrite(usb,[0 42 91 59 0 0]);
%fwrite(usb,[0 47 100 0 0 0]);
fwrite(usb,[0 20 a b c d]);
pause(0.5);
fwrite(usb,[0 20 a b c d]);
fread(usb,6);
fread(usb,6);
 
% Put the speed in terms of steps/second
speed = (speed)/(motorSpeed);
 
% Ask for position and read data packets until the correct response
 fwrite(usb,[0 60 0 0 0 0]);
 while ans(2) ~= 60
 fread(usb,6)
 end
 
% Scan movement
[d3 d4 d5 d6] = entryToBits(speed)
fwrite(usb,[0 42 d3 d4 d5 d6]); %write operation for movement speed
pause(0.1);
fread(usb,6)
% Put distance in terms of mm/step...
distance2 = (-distance)/(motorStep);
% This is the oscillation distance
[d3 d4 d5 d6] = entryToBits(distance2(1));
[d7 d8 d9 d0] = entryToBits(-distance2(1));
 
% dummy vars
a = 1;
test = 0

% DAQ recording parameters
recording_time = distance/(speed*motorSpeed);
DAQ = 130;
timeFinal = 0;
counter = 0;
dis = 0;
finalMag = 0;
magnitudes = 0;
final_array =0;
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while counter<1
count = 0;
fwrite(usb,[0 21 d3 d4 d5 d6]);
%pause(0.0);
 
%% Start the Stream
Error = ljud_ePut(ljHandle,LJ_ioSTART_STREAM,0,0,0);
Error_Message(Error)
for n = 0:Loops
    
    % Set the number of scans to read. We will request twice the number 
we
    % expect, to make sure we get everything that is available. Note the
array
    % we pass must be sized to hold enough SAMPLES, and the Value we 
pass
    % specifies the number of SCANS to read.
    Scans = (ScanRate/1000) * (time*1000)* 2;
    
    % Initialize an array to store data
    array(Scans*num_channels) = double(0);
 
    % Wait a little then read however much data is available
    pause (time-(time*.4))
 
    % Get the Streamed Data. Here the special ljud_eGet_array function 
must be used
    % for array handling. The function ljud_eGet_array calls from a
    % different library where the eGet function has been modified to 
handle
    % arrays. The difference between the regular ljud_eGet and this 
modified
    % ljud_eGet_array is the last input argument data type. In the 
regular ljud_eGet it is
    % specified as an int32. In the modified ljud_eGet_array the last 
input
    % argument is specified as a doublePtr. This modified function 
returns
    % a single column array. If you have streamed from more than one
    % channel the data has to be parsed as in this sample.
    [Error Scans return_array] = 
ljud_eGet_array(ljHandle,LJ_ioGET_STREAM_DATA,LJ_chALL_CHANNELS,Scans,ar
ray);
    Error_Message(Error)
 
    final_array = 
horzcat(final_array,return_array(1:Scans*num_channels));
 
    clear return_array
    clear array
 
end
counter = counter+1; % early versions of the software used a loop to 
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take multiple scans
end
%% Stop the stream
[Error] = ljud_ePut(ljHandle,LJ_ioSTOP_STREAM,0,0,0);
Error_Message(Error)
 
test;
magnitudes = final_array
times = 0:1/DAQ:recording_time;
dis = (time-0.1).*(speed*motorSpeed);
clear final_array

ans = [0 0];
 fwrite(usb,[0 60 0 0 0 0]);
 while ans(2) ~= 60
 fread(usb,6)
 end
 
fclose(usb);
delete(usb);
clear usb;
 

oscillate5() 
(this name is a historical artifact, a more appropriate name would be fastScan())
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Programmer: John Middendorf
% Organization: Wright State University
%
% This program will move the Fabry-Perot, and stream voltage readings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [magnitudes] = oscillate5(motor,start,time,distance)
% motor == 1 is the NA14D30
% motor == 2 is the NA08B30
 
%% Initialize the LabJack
ljud_LoadDriver  %%load driver
ljud_Constants   %%constants
 
[Error ljHandle] = ljud_OpenLabJack(LJ_dtU6,LJ_ctUSB,'1',1);  %%request 
handle
[Error] = ljud_ePut(ljHandle, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0);  %
% reset
Error_Message(Error)
 
if motor == 1
    motorStep  = .000381; %in mm
    motorSpeed = .00371;  %in mm/s (minimum speed)
else
    motorStep  = .0000925;
    motorSpeed = .000893;
end
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% Variable list
Loops = 1;
num_channels = 1;
ScanRate = 6000; % Set scan rate
buffer = 1; % 5 second buffer time
Scans = (ScanRate/1000) * (time*1000)*2;
global final_array;
 
% Configure for 12-bit resolution
Error = 
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chAIN_RESOLUTION,12,0,0);
Error_Message(Error)
 
% Configure AIN0 with Bipolar ±10 volt range
Error = ljud_AddRequest(ljHandle,LJ_ioPUT_AIN_RANGE,0,LJ_rgBIP10V,0,0);
Error_Message(Error)
 
% Configure Scan Rate
Error = 
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chSTREAM_SCAN_FREQUENCY,Scan
Rate,0,0);
Error_Message(Error)
 
% Give the driver a 5 second buffer (ScanRate * 4 Channels * 5 Seconds)
Error =  
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chSTREAM_BUFFER_SIZE,ScanRat
e*num_channels*buffer,0,0);
Error_Message(Error)
 
% Configure reads to retrieve whatever data is available without waiting
Error = 
ljud_AddRequest(ljHandle,LJ_ioPUT_CONFIG,LJ_chSTREAM_WAIT_MODE,LJ_swNONE
,0,0);
Error_Message(Error)
 
% Clear stream channels
Error = ljud_AddRequest(ljHandle,LJ_ioCLEAR_STREAM_CHANNELS,0,0,0,0);
Error_Message(Error)
 
% Define the scan list as AIN0, AIN1, AIN2, and AIN3
Error = ljud_AddRequest(ljHandle,LJ_ioADD_STREAM_CHANNEL,0,0,0,0);
Error_Message(Error)
 
% Execute list of above requests
Error = ljud_GoOne(ljHandle);
Error_Message(Error)
 
%-----------------------------------------------------------------------
---
% Get all results just to check for errors
Error = ljud_GetFirstResult(ljHandle,0,0,0,0,0);
Error_Message (Error)
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% Run while loop until Error 1006 is returned to ensure that the device 
has
% fully configured its channels before continuing.
while (Error ~= 1006) % 1006 Equates to LJE_NO_MORE_DATA_AVAILABLE
    Error = ljud_GetNextResult(ljHandle,0,0,0,0,0);
    if ((Error ~= 0) && (Error ~= 1006))
        Error_Message (Error)
        break
    end
end 
%% Start Fabry-Perot move operation
 
% Get speed, distance, and serial port inputs
%distance = 0.5 %handles.distance
speed = distance/time%2.5 %handles.speed
usb = serial('com11');%handles.usb;
fopen(usb);
 
[a b c d] = entryToBits(start/motorStep);
 
fwrite(usb,[0 42 91 59 0 0]);
%fwrite(usb,[0 47 100 0 0 0]);
fwrite(usb,[0 20 a/1.5 b/1.5 c/1.5 d/1.5]);
pause(0.5);
fwrite(usb,[0 20 a/1.5 b/1.5 c/1.5 d/1.5]);
fread(usb,12);
if ans(8) ~= 20
    fread(usb,6);
end
 
% move to the position... twice.  Sometimes the first command doesn't 
work
fwrite(usb,[0 20 a b c d]);
pause(0.5);
fwrite(usb,[0 20 a b c d]);
fread(usb,6);
pause(3);
% Put the speed in terms of steps/second
speed = (speed)/(motorSpeed);
 
% Ask for position and read data packets until the correct response
 fwrite(usb,[0 60 0 0 0 0]);
 while ans(2) ~= 60
 fread(usb,6)
 end
 
% Start fast scan movement
[d3 d4 d5 d6] = entryToBits(speed)
fwrite(usb,[0 42 d3 d4 d5 d6]); %write operation for movement speed
pause(0.1);
fread(usb,6)
% Put distance in terms of mm/step...
distance2 = distance/(motorStep);
% This is the oscillation distance

173

194



[d3 d4 d5 d6] = entryToBits(distance2(1));
[d7 d8 d9 d0] = entryToBits(-distance2(1));
 
% dummy vars
a = 1;
test = 0
% DAQ parameters
recording_time = distance/(speed*motorSpeed);
DAQ = 130;
timeFinal = 0;
counter = 0;
dis = 0;
finalMag = 0;
magnitudes = 0;
final_array =0;
 
while counter<1
count = 0;
fwrite(usb,[0 21 d3 d4 d5 d6]);
%pause(0.0);
 
%% Start the Stream
Error = ljud_ePut(ljHandle,LJ_ioSTART_STREAM,0,0,0);
Error_Message(Error)
for n = 0:Loops
    
    % Set the number of scans to read. We will request twice the number 
we
    % expect, to make sure we get everything that is available. Note the
array
    % we pass must be sized to hold enough SAMPLES, and the Value we 
pass
    % specifies the number of SCANS to read.
    Scans = (ScanRate/1000) * (time*1000)* 2;
    
    % Initialize an array to store data
    array(Scans*num_channels) = double(0);
 
    % Wait a little then read however much data is available
    pause (time-(time*.4))
 
    % Get the Streamed Data. Here the special ljud_eGet_array function 
must be used
    % for array handling. The function ljud_eGet_array calls from a
    % different library where the eGet function has been modified to 
handle
    % arrays. The difference between the regular ljud_eGet and this 
modified
    % ljud_eGet_array is the last input argument data type. In the 
regular ljud_eGet it is
    % specified as an int32. In the modified ljud_eGet_array the last 
input
    % argument is specified as a doublePtr. This modified function 
returns
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    % a single column array. If you have streamed from more than one
    % channel the data has to be parsed as in this sample.
    [Error Scans return_array] = 
ljud_eGet_array(ljHandle,LJ_ioGET_STREAM_DATA,LJ_chALL_CHANNELS,Scans,ar
ray);
    Error_Message(Error)
 
    final_array = 
horzcat(final_array,return_array(1:Scans*num_channels));
 
    clear return_array
    clear array
 
end
counter = counter+1; % This loop can be modified to perform multiple 
scans
end
%% Stop the stream
[Error] = ljud_ePut(ljHandle,LJ_ioSTOP_STREAM,0,0,0);
Error_Message(Error)
 
test;
magnitudes = final_array
times = 0:1/DAQ:recording_time;
dis = (time-0.1).*(speed*motorSpeed);
 
figure;
plot(linspace(0,distance,length(magnitudes)),magnitudes);
ans = [0 0];
 fwrite(usb,[0 60 0 0 0 0]);
 while ans(2) ~= 60
 fread(usb,6)
 end
 
fclose(usb);
delete(usb);
clear usb;
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Appendix C

CAD part designs used for the final THz FPI design
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Figure 85: Mount for the Zaber linear actuator.  The slots on the long side are where the 
mount is attached to the base-plate.  The holes on the short side are where the linear 
actuator is mounted.
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Figure 86: Mount for the stationary FPI mirror (polarizer in a rotation stage).  One 
screw hole is to mount this peice to the baseplate, the other is for mounting the mirror.

Figure 87: The base-plate.  This is simply a metal plate with precisely drilled holes.  The 
FPI parts all mount to this plate, this way the system is easily transportable.
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